
GeoSteiner 5.3

User’s Guide and Reference Manual

Copyright c© 2004, 2022 by David M. Warme, Pawel Winter and Martin Zachariasen.

This work is licenced under a Creative Commons

Attribution-NonCommercial 4.0 International License.

2

Contents

1 Introduction 1

1.1 Steiner tree problems . 2

1.2 Callable library . 2

1.3 Stand-alone programs . 4

1.4 Historic note and literature . 4

2 Callable Library User’s Guide 6

2.1 High-level interfaces . 6

2.2 Low-level interfaces . 8

2.3 Algorithmic callback functions 11

3 Callable Library Functions 13

3.1 Application programming interface 13

3.2 Design of library . 13

3.3 Library objects . 14

3.3.1 GeoSteiner environment 14

3.3.2 Parameter set . 14

3.3.3 Problem instance . 15

3.3.4 Problem solution state 15

3.3.5 Auxiliary objects . 15

3.4 Opening and closing GeoSteiner environment 17

3.5 High-level optimization functions 27

3.6 Parameter setting and querying functions 34

3.7 Metric setting and querying functions 54

3.8 Property list setting and querying functions 60

3.9 Hypergraph functions . 74

3.10 FST generation and pruning functions 102

3.11 Hypergraph optimization functions 108

3.12 Optimization callback functions 119

3.13 Message handling functions . 134

3.14 Input and output functions . 145

3.15 Miscellaneous functions . 154

4 Stand-Alone Programs 156

References 173

i

A Library Parameters 174

A.1 FST generation parameters . 175

A.2 LP solver parameters . 178

A.3 Hypergraph solver algorithmic options 179

A.4 Hypergraph solver stopping conditions 187

A.5 Hypergraph solver input/output options 190

B Hypergraph Properties 193

C Solver Properties 194

D Error Codes 195

E FST Data File Formats 196

ii

iii

Preface

This manual documents GeoSteiner version 5.3 — an optimization software pack-

age for solving Steiner tree problems. GeoSteiner version 4.0 was a proprietary

commercial product, that was released in substantially identical form under an

open source form beginning with version 5.0. GeoSteiner version 3.1 is still avail-

able from www.geosteiner.com under an academic license, but is no longer

supported.

Version 5.3 contains significant improvements over the previous version (Geo-

Steiner 3.1); these improvements are both functional and structural. By far the

largest structural change is that the core optimization algorithms have now been

encapsulated into a library of callable subroutines. This greatly facilitates the in-

corporation of GeoSteiner into other applications. Indeed, the old familiar stand-

alone programs from version 3.1 have now been completely re-implemented to

use only the documented library interfaces. The ability to use function calls in-

stead of program calls from applications provides for more efficient solution of

(large) series of problem instances; such applications occur frequently in, e.g.,

VLSI layout. In addition, the library interfaces provide greater control of the so-

lution process when needed.

The authors would like to thank Benny K. Nielsen, who has been the programmer

on the callable library project. In addition, Benny has written a major part of the

new FST generator for uniformly-oriented Steiner trees.

Copenhagen/Washington, April 2023

David M. Warme

Pawel Winter

Martin Zachariasen

1

1 Introduction

GeoSteiner is a software package for solving Steiner tree problems. The package

currently solves the following NP-hard problems in the plane1:

• Euclidean Steiner tree problem.

• Rectilinear Steiner tree problem.

• Uniformly-oriented Steiner tree problem (including hexagonal and octilin-

ear Steiner tree problems).

In addition, the package gives the user access to a powerful solver for

• Minimum spanning tree in hypergraph (MSTHG) problem.

The solver for this NP-hard problem is used as a subroutine in the solution of the

above geometric problems.

GeoSteiner is written in ANSI C. The code makes heavy use of linear program-

ming (LP); the public domain LP-solver lp solve is included (in a significantly

modified form). However, the package also supports CPLEX, a proprietary prod-

uct of IBM Inc., which is perhaps the fastest and most robust LP-solver available.

The authors of GeoSteiner strongly recommend that you use CPLEX if at all pos-

sible — especially for production applications or published computational studies.

The core callable library requires no supplementary software or libraries (except

the CPLEX library if GeoSteiner is configured to use CPLEX as its LP solver).

In this introductory section we first define the problems that are solved by Geo-

Steiner, and give some fundamental definitions and acronyms used throughout

this manual (Section 1.1). Then an introduction to the callable library and associ-

ated stand-alone problems is given (Sections 1.2 and 1.3). Finally, we give some

historic background on GeoSteiner in Section 1.4.

1Problem definitions are given in Section 1.1.

2 1 INTRODUCTION

1.1 Steiner tree problems

Given a metric and a (finite) set of points in the plane, also denoted terminals, a

Steiner minimum tree (SMT) is a shortest possible interconnection of the termi-

nals. This interconnection must be a tree, and may contain junctions that are not

among the terminals, so-called Steiner points. In Figure 1 we show four differ-

ent SMTs for the same set of terminals. These are SMTs under the Euclidean,

rectilinear, hexagonal and octilinear metric, respectively.

All metrics currently handled by GeoSteiner are uniformly oriented metrics: Given

a set of λ ≥ 2 uniformly oriented directions in the plane, the distance between two

points is defined to be the length of a shortest path in which all line segments have

one of the given directions. As special cases we have the rectilinear (λ = 2),

hexagonal (λ = 3), octilinear (λ = 4) and Euclidean (λ = ∞) metric.

If we break an SMT at all terminals having two or more incident edges, each

component will be a so-called full Steiner tree (FST). These are trees in which

all terminals are leaves. The fact that the number of terminals in each FST in an

SMT usually is small is what makes it possible to solve large problem instances to

optimality. More specifically, the algorithms employed by GeoSteiner first gen-

erate a set of FSTs known to contain an SMT as a subset, and then the shortest

possible union of FSTs interconnecting all terminals is selected; we say that the

FSTs are concatenated. The concatenation problem is equivalent to finding a min-

imum spanning tree in a hypergraph (problem MSTHG). An efficient solver for

this subproblem forms a cornerstone of GeoSteiner.

1.2 Callable library

The kernel of GeoSteiner is the callable library. Both high-level and low-level

interfaces are provided. Also included are powerful routines for manipulating var-

ious algorithmic parameters, handling messages, and accessing problem instance

data in various formats.

The high-level interfaces give the user easy access to the basic algorithms in the

library. Problem instances are given as simple arrays, and the functions return

optimal solutions to the problem instances.

Low-level interfaces are provided for users who need more control over the solu-

1.2 Callable library 3

Euclidean SMT: 20 points, length = 30213.19418714918, 0.01 seconds Rectilinear SMT: 20 points, length = 34767, 0.00 seconds

Hexagonal SMT: 20 points, length = 32447.53363589430, 0.00 seconds Octilinear SMT: 20 points, length = 31382.81130634991, 0.00 seconds

Figure 1: SMTs for the same set of terminals under different metrics (output from

GeoSteiner).

4 1 INTRODUCTION

tion process. Also, the low-level interfaces are used by the stand-alone programs

that accompany the callable library. For more details on the design and structure

of the callable library, please consult the user’s guide in Section 2 and the callable

library reference manual in Section 3.

1.3 Stand-alone programs

The stand-alone programs are provided for users who would like to solve Steiner

tree problems without writing their own application programs. For example, if

the coordinates of the given problem instance are given in a file, the stand-alone

programs give the user the opportunity to solve the instance and make a postscript

plot of the solution. A complete list of all stand-alone programs, including docu-

mentation of their invocation options, and examples of their use are given in Sec-

tion 4.

1.4 Historic note and literature

To the best knowledge of the authors, as of April 2023, GeoSteiner represents

the computational state of the art for geometric Steiner tree problems in the plane

under each of the following metrics:

• Euclidean

• Rectilinear

• Uniformly oriented metrics

Furthermore, GeoSteiner has held this dominant position continuously since at

least 1998. During the 11th DIMACS Implementation Challenge (December,

2015) no other algorithms world-wide were entered into any of these problem

categories. (Because GeoSteiner was only entrant in each of these categories, no

competition was performed — which is why GeoSteiner does not appear in any

of the official DIMACS 11 competition results.)

The “GeoSteiner” name was coined (and is therefore “owned”) by Pawel Winter,

whose seminal program GEOSTEINER started it all back in 1985 [7]. In 1996

Winter and Zachariasen published an improved algorithm called “GeoSteiner96” [8].

1.4 Historic note and literature 5

On the other hand, Warme’s first Steiner tree code was the Salowe-Warme algo-

rithm in 1993, which used backtrack search to concatenate rectilinear FSTs [3].

In 1998, Warme’s Ph.D. dissertation [5] described a new branch-and-cut code for

finding minimum spanning trees in arbitrary hypergraphs — which was applied

to the FST concatenation problem for both rectilinear and Euclidean FSTs.

The first distribution of the combined code therefore represented the “third ver-

sion” of each group’s code, and it was thus named GeoSteiner version 3.0. This

and subsequent versions continue that naming convention.

The algorithms in GeoSteiner 3.0 are based on those described in [6, 8, 9].

GeoSteiner 4.0 was a proprietary commercial product which introduced the callable

library interfaces, and support for solving uniformly-oriented Steiner trees [2]. In

addition, a number of minor improvements were made throughout the code.

Upon termination of commercial operations in 2015, the GeoSteiner code was

released once again in open source form as GeoSteiner version 5.0, and its various

successors.

6 2 CALLABLE LIBRARY USER’S GUIDE

2 Callable Library User’s Guide

In this section we give a number of examples of using the callable library. We

start with a few simple uses of the high-level functions, then move to the low-

level interfaces, and finally, we discuss the use of callback functions.

2.1 High-level interfaces

Any application program that uses the GeoSteiner library must include the Geo-

Steiner header file geosteiner.h. Furthermore, the GeoSteiner environment

must be opened using the function gst open geosteiner() as described in Sec-

tion 3.4 on page 17.

Our first example, shown in Figure 2, computes an Euclidean SMT for the points

(0, 0), (0, 1), (1, 0) and (1, 1). After having successfully opened the GeoSteiner

environment, we use the high-level function gst esmt() to compute the SMT (see

page 29). As arguments we first pass the number of terminals, here 4, and then a

double array terms that holds the terminal point coordinates. Then follow the vari-

ables length, nsps and sps, in which the length of the computed SMT, the number

of Steiner points and the coordinates of the Steiner points will be returned. The

remaining arguments to gst esmt() are all given as NULL, causing correspond-

ing inputs to assume default values, and corresponding outputs to be ignored; in

particular the edges of the optimal solution and the solution status are all ignored,

and default values are assumed for all GeoSteiner parameters.

In the program we assume that gst esmt() returns successfully — the return code

is not checked — and then we print the length of the SMT and the (two) Steiner

points. Finally, we close the GeoSteiner environment and the program ends. We

encourage you to run the demo1 program that comes with the GeoSteiner distri-

bution.

Our next example, demo2, computes a series of SMTs for randomly generated

points sets (Figure 3). This program has two command line parameters: Firstly,

the λ-value for the uniformly oriented metric that is to be used — where λ = 0 is

defined to be the Euclidean metric; secondly, the required maximum excess from

optimum in percent. As an example, “demo2 4 1” computes Steiner trees using

the octilinear metric whose length are at most 1% from optimum.

2.1 High-level interfaces 7

#include "geosteiner.h"

#include "stdlib.h"

int main (int argc, char** argv)

{

double terms [8] = { 0, 0,

0, 1,

1, 0,

1, 1 };

int i, nsps;

double length, sps [4];

/* Open GeoSteiner environment */

if (gst_open_geosteiner () != 0) {

printf ("Could not open GeoSteiner.\n");

exit (1);

}

/* Compute Euclidean Steiner tree */

gst_esmt (4, terms, &length, &nsps, sps, NULL, NULL, NULL, NULL);

/* Display information about solution */

printf ("Steiner tree has length %f\n", length);

for (i = 0; i < nsps; i++) {

printf ("Steiner point: (%f, %f)\n", sps[2*i], sps[2*i+1]);

}

/* Close GeoSteiner environment */

gst_close_geosteiner ();

exit (0);

}

Figure 2: Demo program that computes an Euclidean SMT for four terminals

(demo1.c)

8 2 CALLABLE LIBRARY USER’S GUIDE

In the program we first read the command line parameters and then create a met-

ric object (see Section 3.7) that corresponds to the given command line para-

meter. Then we create a default parameter set (see Section 3.6) and change the

GST PARAM GAP TARGET parameter (see Appendix A). Finally, we compute

the SMTs using the high-level function gst smt() which takes the metric object

and parameter set as arguments. Only the SMT length is returned from gst smt(),

and based on this the total length of all SMTs is computed and displayed.

Our third example, shown in Figure 4, is similar to the previous example, but

instead of generating the terminal coordinates using a random number generator,

we read the terminal coordinates from input. The input is assumed to be in the

OR-library format2. The program reads every instance in the file and computes

an SMT for each. The metric is given as the first command line parameter to

the program. Furthermore, the maximum FST size (number of terminals) can be

specified as the second command line parameter. By giving (small) bound on the

FST size, the running time of FST generation may decrease significantly — at the

cost of not necessarily returning the optimal solution.

2.2 Low-level interfaces

The low-level interfaces completely separate FST generation and FST concatena-

tion, the two components of the exact algorithm used by GeoSteiner. Thus it is

possible to use alternative FST generation or concatenation algorithms — or to

store away generated FSTs and concatenate them at a later time.

Another advantage of using the low-level interfaces is the greater control they

provide over the solution process, in particular with respect to solving the FST

concatenation problem. For most large instances the FST concatenation problem

— which is equivalent to solving a MSTHG problem — is by far the most time-

consuming part of the solution process.

As for the high-level interfaces, programs that use the low-level interfaces must

include the GeoSteiner header file and open the GeoSteiner environment. In the

example given in Figure 5 we construct a large random terminal set, generate

the rectilinear FSTs, and set up a solution state object for the MSTHG problem

(see Section 3.11). One of the parameters passed to the solution state object is

2OR-library: http://www.ms.ic.ac.uk/info.html

2.2 Low-level interfaces 9

#include <math.h>

#include <stdlib.h>

#include "geosteiner.h"

#define NUM_INSTANCES 10

#define NUM_TERMS 50

int main (int argc, char** argv)

{

int i, j, lambda = 2;

double terms[2*NUM_TERMS], length, total_length = 0.0, max_excess = 0.0;

gst_metric_ptr metric;

gst_param_ptr params;

/* Read command line parameters (metric and max. excess in percent) */

if (argc >= 2) lambda = atoi (argv[1]);

if (argc >= 3) max_excess = atof (argv[2]);

/* Open GeoSteiner environment */

if (gst_open_geosteiner () != 0) {

printf ("Could not open GeoSteiner.\n");

exit (1);

}

/* Set up metric */

switch (lambda) {

case 0: /* Euclidean metric */

metric = gst_create_metric (GST_METRIC_L, 2, NULL); break;

case 2: /* Rectilinear metric */

metric = gst_create_metric (GST_METRIC_L, 1, NULL); break;

default:/* General uniform metric */

metric = gst_create_metric (GST_METRIC_UNIFORM, lambda, NULL);

}

/* Set up parameter set */

params = gst_create_param (NULL);

gst_set_dbl_param (params, GST_PARAM_GAP_TARGET, 1.0 + (max_excess/100.0));

/* Generate NUM_INSTANCES random instances with NUM_TERMS terminals */

srand48 (1);

for (i = 1; i <= NUM_INSTANCES; i++) {

/* Generate random points with coordinates in range 0..9999 */

for (j = 0; j < 2*NUM_TERMS; j++)

terms[j] = floor (drand48() * 10000.0);

/* Compute Steiner tree and print length */

gst_smt (NUM_TERMS, terms, &length, NULL, NULL, NULL, NULL, NULL,

metric, params);

printf ("Instance %2d has length %f\n", i, length);

total_length += length;

}

printf ("\nTotal length of all instances is %f\n", total_length);

/* Clean up */

gst_free_metric (metric);

gst_free_param (params);

gst_close_geosteiner ();

exit (0);

}

Figure 3: Demo program that computes SMTs for a series of randomly generated

problem instances (demo2.c).

10 2 CALLABLE LIBRARY USER’S GUIDE

#include <stdlib.h>

#include "geosteiner.h"

int main (int argc, char** argv)

{

int i, lambda = 2, num_instances, num_terms;

double * terms, length, total_length = 0.0, max_fst_size = 0;

gst_metric_ptr metric;

gst_param_ptr params;

/* Read command line parameters (metric and max. FST size) */

if (argc >= 2) lambda = atoi (argv [1]);

if (argc >= 3) max_fst_size = atof (argv [2]);

/* Open GeoSteiner environment */

if (gst_open_geosteiner () != 0) {

printf ("Could not open GeoSteiner.\n");

exit (1);

}

/* Set up metric */

switch (lambda) {

case 0: /* Euclidean metric */

metric = gst_create_metric (GST_METRIC_L, 2, NULL); break;

case 2: /* Rectilinear metric */

metric = gst_create_metric (GST_METRIC_L, 1, NULL); break;

default:/* General uniform metric */

metric = gst_create_metric (GST_METRIC_UNIFORM, lambda, NULL);

}

/* Set up parameter set */

params = gst_create_param (NULL);

if (max_fst_size >= 2)

gst_set_int_param (params, GST_PARAM_MAX_FST_SIZE, max_fst_size);

/* Read the number of instances and then the instances thenselves */

scanf ("%d", &num_instances);

for (i = 1; i <= num_instances; i++) {

/* Read instance from stdin */

scanf ("%d", &num_terms);

terms = (double *) malloc (2*num_terms*sizeof(double));

gst_get_points (stdin, num_terms, &terms, NULL);

/* Compute Steiner tree */

gst_smt (num_terms, terms, &length, NULL, NULL, NULL, NULL, NULL,

metric, params);

printf ("Instance %5d has %5d terminals and length %f\n",

i, num_terms, length);

total_length += length;

free (terms);

}

printf ("\nTotal length of all instances is %f\n", total_length);

/* Clean up */

gst_free_metric (metric);

gst_free_param (params);

gst_close_geosteiner ();

exit (0);

}

Figure 4: Demo program that computes SMTs for a series of instances read from

an OR-library file (demo3.c).

2.3 Algorithmic callback functions 11

GST PARAM CPU TIME LIMIT, which limits the amount of time spent in the

solver before returning to the application program.

In the main loop of the program we run the MSTHG solver by calling gst hg solve(),

passing the solution state object as an argument. When this function returns, we

query the solution state object for the current solution status; this is done by calling

gst get solver status() which returns a code that represents the four possibilities

(optimal solution, feasible solution, infeasible problem, no feasible solution yet).

If a feasible solution has been found, the current upper and lower bound is ob-

tained by querying the solution state property list. In our example we repeat the

main loop until we have found a feasible solution that is within the maximum

specified excess from optimum.

2.3 Algorithmic callback functions

Algorithmic callback functions provide the lowest-level — and perhaps most pow-

erful — of all the interfaces in the GeoSteiner callable library. Callbacks are user-

written functions. Such functions become callbacks by passing their address to

suitable GeoSteiner routines. Once a function is established as a callback in this

manner, GeoSteiner automatically invokes the function at the corresponding crit-

ical points in the branch-and-cut algorithm. For example, the user can provide

callback routines that are invoked every time

• an LP is solved during the optimize / separate loop,

• processing of a branch-and-bound node completes,

• a new upper bound is obtained.

Callback functions permit the user to extend the GeoSteiner optimization algo-

rithms by incorporating application specific knowledge into some of GeoSteiner’s

most critical decisions. As an example, the bb program (see Section 4) uses

callbacks to implement the bb -r switch: a callback function is defined that is

invoked upon completion of every node. When invoked for the root node, the LP

solution is fractional, and the -r switch was specified, this callback generates a

postscript plot of the node’s LP relaxation.

12 2 CALLABLE LIBRARY USER’S GUIDE

#include <math.h>

#include <stdlib.h>

#include "geosteiner.h"

#define NUM_TERMS 1000

#define TIME_INTERVAL 2

#define MAX_EXCESS 0.1

int main (int argc, char** argv)

{

int j, status, soln_status;

double terms[2*NUM_TERMS], lb, ub, cpu;

gst_hg_ptr hg; gst_solver_ptr solver; gst_param_ptr params;

/* Open GeoSteiner environment */

if (gst_open_geosteiner () != 0) {

printf ("Could not open GeoSteiner.\n");

exit (1);

}

/* Generate random terminals with coordinates in range 0..9999 */

srand48 (1);

for (j = 0; j < 2*NUM_TERMS; j++)

terms[j] = floor (drand48 () * 10000.0);

/* Generate full Steiner trees (default parameters) */

hg = gst_generate_rfsts (NUM_TERMS, terms, NULL, &status);

/* Set up solver and its parameters */

params = gst_create_param (&status);

gst_set_dbl_param (params, GST_PARAM_CPU_TIME_LIMIT, TIME_INTERVAL);

solver = gst_create_solver (hg, params, &status);

for (;;) {

gst_hg_solve (solver, NULL);

gst_get_solver_status (solver, &soln_status);

switch (soln_status) {

case GST_STATUS_OPTIMAL:

case GST_STATUS_FEASIBLE:

gst_get_dbl_property (gst_get_solver_properties (solver),

GST_PROP_SOLVER_LOWER_BOUND, &lb);

gst_get_dbl_property (gst_get_solver_properties (solver),

GST_PROP_SOLVER_CPU_TIME, &cpu);

gst_hg_solution (solver, NULL, NULL, &ub, 0);

printf ("Time: %.2f. LB = %f, UB = %f, ratio = %f\n",

cpu, lb, ub, ub/lb); break;

case GST_STATUS_INFEASIBLE:

printf ("Problem is infeasible!\n"); break;

case GST_STATUS_NO_FEASIBLE:

gst_get_dbl_property (gst_get_solver_properties (solver),

GST_PROP_SOLVER_CPU_TIME, &cpu);

printf ("Time: %.2f. No feasible solution found yet.\n", cpu);

}

if (soln_status == GST_STATUS_OPTIMAL) break;

if ((soln_status == GST_STATUS_FEASIBLE) &&

(ub/lb < 1.0 + (MAX_EXCESS / 100.0))) break;

}

/* Clean up */

gst_free_solver (solver); gst_free_hg (hg);

gst_free_param (params); gst_close_geosteiner ();

exit (0);

}

Figure 5: Demo program that computes a rectilinear Steiner tree (not necessarily

minimal) for a large random terminal set. The upper bound/lower bound gap is

displayed at fixed running time intervals (demo4.c).

13

3 Callable Library Functions

3.1 Application programming interface

All declarations needed to use the GeoSteiner library in an application are defined

in a single include file called geosteiner.h. All identifiers #define’d in the

header file begin with the prefix “GST ”. All structure or union tags and typedefs

begin with the prefix “gst ”. All functions provided by the library begin with the

prefix “gst ”.

All GeoSteiner library functions reside in a single library. On most systems the

name will be libgeosteiner.a and linking is done with -lgeosteiner.

A shared library is also possible on some systems. If GeoSteiner has been config-

ured to use CPLEX as its LP-solver, then the CPLEX callable library must also

be linked with the application program.

3.2 Design of library

The GeoSteiner library is designed to be completely re-entrant so that multiple

problems can be solved serially or in a round-robin fashion. The current imple-

mentation might not yet completely satisfy this goal — especially concerning the

various LP-solver interfaces and the way GeoSteiner interacts with them. We hope

to eventually make the library fully thread-safe so that multiple problems can be

solved in parallel within a single process address space on a multi-processor sys-

tem. However, this ideal is not yet supported in the current version.

All output generated by the library (i.e., text that was written to stdout or stderr

by previous versions of GeoSteiner) is now user-controllable. Various types of

output have parameters that enable/disable their generation. This is achieved using

so-called “channels” described in Section 3.13. By default, library routines are

completely “quiet”.

The library does not use any signals nor does it establish any signal handlers.

These would be potential points of contention with applications that use the li-

brary. Instead, all asynchronous requests to alter or abort a GeoSteiner compu-

tation (e.g., to abort the solution process, force branching in lieu of constraint

generation, etc.) are delivered by a single routine that is designed to be safe

14 3 CALLABLE LIBRARY FUNCTIONS

when called from a user-defined signal handler (see the description of the function

gst deliver signals() on page 155 for more information).

During execution of its library functions, GeoSteiner enables the delivery of floating-

point exceptions to the calling process/thread as SIGFPE (or other) signals. This

is done for floating-point overflow, divide-by-zero and invalid operation excep-

tions. (By default on most systems, these floating-point exceptions generate and

propagate not-a-number (NaN) values. Not all NaN values generated within an al-

gorithm reach the outputs of that algorithm, nor are NaN results always “noticed”

by their callers. To improve reliability, robustness, debug ability and trustwor-

thiness of its numeric results, GeoSteiner forces these exceptions to immediately

signal their occurrence. This is currently supported on the x86 64 and arm64

platforms.)

3.3 Library objects

3.3.1 GeoSteiner environment

The GeoSteiner environment encapsulates licensing information and platform-

specific data. If CPLEX is used as LP solver, the CPLEX environment is stored

here.

The environment is a single global variable. No explicit user references to the

environment are possible, but the environment must be initialized by calling the

gst open geosteiner() function (see Section 3.4).

3.3.2 Parameter set

A parameter set holds values for all parameters used by the library. In order to

change one or more parameters, the user creates a new parameter set and modifies

the parameter(s) in this set. A pointer to the parameter set (typegst param ptr)

is then passed to all functions for which these parameter settings should have ef-

fect. Whenever a GeoSteiner function accepts an argument of typegst param ptr,

the user may pass a NULL pointer in which case the GeoSteiner library assumes

default settings for all parameter values.

3.3 Library objects 15

Parameter setting and querying functions are described in Section 3.6, while the

individual parameters are described in Appendix A.

3.3.3 Problem instance

The problem instance object is a hypergraph that can be decorated with a vari-

ety of additional (and optional) data (see Section 3.9). By attaching information

globally to the hypergraph, and to its vertices and edges, the problem to be solved

becomes well-defined. In general we would like to construct a tree in the hyper-

graph. Problem instance objects have type gst hg ptr.

3.3.4 Problem solution state

The problem solution state object represents the “state” of some solution pro-

cess for a given problem instance (see Section 3.11). The object can contain

zero or more feasible (though not necessarily optimal) solutions to the problem.

For a given problem instance, several problem solution state objects may be cre-

ated. A problem solution state object refers to both a problem instance being

solved and a parameter object (from which all necessary parameter values are

obtained), as illustrated in Figure 6. The problem solution state object has type

gst solver ptr.

3.3.5 Auxiliary objects

In addition to the four object classes described above, GeoSteiner uses objects

for handling metrics, property lists, messages, and scaling information. A short

introduction to these auxiliary objects is given in this section.

Metric A metric object identifies the method for computing distances between

pairs of points. A metric object has type gst metric ptr, and can be passed as

an argument to some of the functions in the callable library. For more information,

see the examples given in Section 2.2, and the descriptions of the metric functions

in Section 3.7.

16 3 CALLABLE LIBRARY FUNCTIONS

Problem Solution State

gst solver ptr

Problem Instance

gst hg ptr

Parameter Set

gst param ptr

�
�

�
�

��✠

❅
❅
❅
❅
❅❅❘

Figure 6: Problem solution state references a problem instance and a parameter

set.

Property List A property list contains auxiliary information about problem in-

stances and solution state objects, e.g. the CPU time for FST generation (problem

instance property) and the current lower bound in the MSTHG solver (solution

state property). Property lists have type gst proplist ptr, and a property is

known by its property identification number (see Section 3.8).

Channel All output messages from GeoSteiner are passed through user-controllable

channels. A given channel may write its output to more than one output (screen/files).

Channels have type gst channel ptr and are described in Section 3.13.

Scaling Information A set of points may have associated scaling information,

that is, information about how the internal representation (double floating point

values) should be scaled back to the original point coordinates. This is done in or-

der to improve the numerical precision of GeoSteiner. Scaling information objects

have type gst scale info ptr and are described in Section 3.14.

3.4 Opening and closing GeoSteiner environment 17

3.4 Opening and closing GeoSteiner environment

The GeoSteiner environment encapsulates licensing information and platform-

specific data. If CPLEX is used as LP solver, the CPLEX environment is stored

in the GeoSteiner environment.

The environment is a single global variable. No explicit user references to the

environment are possible, but the environment must be initialized by calling the

gst open geosteiner() function before any other library functions can be invoked.

In the reminder of this section, we present each of the functions in the library

related to the GeoSteiner environment.

18 3 CALLABLE LIBRARY FUNCTIONS

gst open geosteiner

GeoSteiner can be in two major states open or closed. The initial state is always

closed. This routine transitions GeoSteiner from the closed state to the open state

by initializing the GeoSteiner environment. No other GeoSteiner library function

may be called when GeoSteiner is closed. In a multi-threaded environment, it is

the application’s responsibility to ensure that no calls to other GeoSteiner library

functions are either pending or initiated until GeoSteiner is in the open state —

which begins as soon as this routine returns with a status code of zero.

Note that the function does not open the LP solver (e.g., CPLEX). This is done

automatically the first time the LP solver environment is accessed; however, it

can also be done explicitly using the gst open lpsolver() function. An existing

CPLEX environment can also be attached to the GeoSteiner environment. See

gst attach cplex(); this is only relevant for CPLEX versions of the library.

int gst_open_geosteiner (void);

Returns status code (which is zero if GeoSteiner was successfully opened).

Example:

if (gst_open_geosteiner()) {

printf("GeoSteiner was not opened successfully.\n");

exit(1);

}

3.4 Opening and closing GeoSteiner environment 19

gst close geosteiner

Transition GeoSteiner from the open to the closed state. Conceptually, GeoSteiner

enters the closed state the very instant this routine is called. In a multi-threaded

environment, it is the application’s responsibility to ensure that no calls to other

GeoSteiner library functions are pending at the time this routine is invoked.

int gst_close_geosteiner (void);

Returns error code (which is zero if GeoSteiner was successfully closed).

Example:

if (gst_close_geosteiner()) {

printf("GeoSteiner was not closed successfully.\n");

exit(1);

}

20 3 CALLABLE LIBRARY FUNCTIONS

gst version string

Return GeoSteiner version number as a character string.

const char * gst_version_string (void);

Returns null-terminated string giving the GeoSteiner version number.

Example:

printf ("This is GeoSteiner version %s\n", gst_version_string());

3.4 Opening and closing GeoSteiner environment 21

gst version

Return GeoSteiner version number as an integer with the following decimal in-

terpretation: XXXYYYZZZ, where XXX is the major version, YYY is the minor

version and ZZZ is the patch-level.

int gst_version (void);

Returns integer representing the version number.

Example:

int version = gst_version();

printf ("This is GeoSteiner version %d.%d.%d\n",

(version / 1000000),

(version / 1000) % 1000,

(version % 1000));

22 3 CALLABLE LIBRARY FUNCTIONS

gst open lpsolver

Initialize LP solver (e.g., CPLEX) environment. It is not necessary to open the

LP solver explicitly, since this is done automatically the first time the LP solver is

needed. However, it might be advantageous to ensure that the LP solver has been

successfully opened and is available for use before starting a long run.

int gst_open_lpsolver (void);

Returns value zero if the LP solver was opened successfully or already was open.

Example:

if (gst_open_geosteiner()) {

printf("GeoSteiner was not opened successfully.\n");

exit(1);

}

if (gst_open_lpsolver()) {

printf("LP solver was not initialized successfully.\n");

exit(1);

}

/* At this point both GeoSteiner and the LP solver are opened... */

3.4 Opening and closing GeoSteiner environment 23

gst close lpsolver

Close LP solver environment. In the case where the LP solver was attached, e.g.,

using gst attach cplex(), then this routine detaches but does not close the LP

solver.

int gst_close_lpsolver (void);

Returns value zero if the solver was closed successfully or already was closed.

Example:

if (gst_close_geosteiner()) {

printf("LP solver could not be closed successfully.\n");

exit(1);

}

24 3 CALLABLE LIBRARY FUNCTIONS

gst lpsolver version string

Return the name of the configured LP solver and its version number as a string.

const char* gst_lpsolver_version_string (void);

Returns zero-terminated string giving the LP solver name and version.

Example:

printf ("GeoSteiner used LP solver %s\n",

gst_lpsolver_version_string());

3.4 Opening and closing GeoSteiner environment 25

gst attach cplex

Provided only for CPLEX versions of the library. Attach an existing CPLEX

environment to GeoSteiner. Certain applications may wish to use CPLEX before,

during and/or after they use GeoSteiner. This function permits such applications

to use an existing CPLEX environment rather than letting GeoSteiner attempt to

open CPLEX itself (which would fail if CPLEX were already open). A non-

NULL CPLEX environment that was attached using gst attach cplex() will not

be closed when gst close geosteiner() is called.

void gst_attach_cplex (struct cpxenv* envp);

envp CPLEX environment to be attached.

No return value.

Example:

/* Assume that envp is an existing CPLEX environment...*/

/* Open GeoSteiner */

if (gst_open_geosteiner()) {

printf("GeoSteiner was not opened successfully.\n");

exit(1);

}

/* Attach existing CPLEX environment */

gst_attach_cplex(envp);

/* Now envp is the CPLEX environment used by GeoSteiner... */

/* Detach CPLEX environment and close GeoSteiner */

gst_detach_cplex();

gst_close_geosteiner();

26 3 CALLABLE LIBRARY FUNCTIONS

gst detach cplex

Provided only for CPLEX versions of the library. Detach and return a previously

attached CPLEX environment. Does not close the CPLEX environment.

struct cpxenv* gst_detach_cplex ();

Return value is NULL if no CPLEX environment is currently attached.

An example is given with the documentation of gst attach cplex() on page 25.

3.5 High-level optimization functions 27

3.5 High-level optimization functions

The high-level functions give the user easy access to the basic algorithms in the

library. There are two types of functions: Firstly, there are functions that solve

Steiner tree problems in the plane by passing a set of point coordinates; secondly,

the MSTHG problem can be solved by giving a description of the hypergraph

instance.

All functions have a parameter set as argument. This parameter set can be cre-

ated and modified using the functions described in Section 3.6. However, default

parameters are used for all parameters if a NULL pointer is passed as parameter

set.

28 3 CALLABLE LIBRARY FUNCTIONS

gst smt

Given a set of points (or terminals) in the plane, construct an SMT for the points.

The metric used for the SMT construction must be specified. (Dedicated func-

tions for specific metrics are given on the following pages.) The length of the

constructed SMT, the Steiner points and the list of line segments in the SMT are

returned.

Any of the output parameters may be set to NULL if the corresponding output is

not needed. It is the responsibility of the user to allocate sufficient memory for

the output arrays.

int gst_smt (int nterms,

double* terms,

double* length,

int* nsps,

double* sps,

int* nedges,

int* edges,

int* status,

gst_metric_ptr metric,

gst_param_ptr param);

nterms Number of points (or terminals).

terms Input point coordinates (x1, y1, x2, y2, . . .).

length Length of computed SMT.

nsps Number of Steiner points.

sps Steiner point coordinates.

edges
Edges of SMT (terminals have index 0 to nterms-1

while Steiner points have index nterms and up).

status Solution status code (see page 113).

metric Metric object (see Section 3.7).

param Parameter set (NULL=default parameters).

Returns value zero if an SMT was computed and non-zero otherwise. See Figure 3

on page 9 or the example file demo2.c for an example of how to use gst smt().

3.5 High-level optimization functions 29

gst esmt

Given a set of points (or terminals) in the plane, construct an Euclidean SMT for

the points. The length of the constructed SMT, the Steiner points and the list of

line segments in the SMT are returned.

Any of the output parameters may be set to NULL if the corresponding output is

not needed. It is the responsibility of the user to allocate sufficient memory for

the output arrays.

int gst_esmt (int nterms,

double* terms,

double* length,

int* nsps,

double* sps,

int* nedges,

int* edges,

int* status,

gst_param_ptr param);

nterms Number of points (or terminals).

terms Input point coordinates (x1, y1, x2, y2, . . .).

length Length of computed SMT.

nsps Number of Steiner points.

sps Steiner point coordinates.

edges
Edges of SMT (terminals have index 0 to nterms-1

while Steiner points have index nterms and up).

status Solution status code (see page 113).

param Parameter set (NULL=default parameters).

Returns value zero if an SMT was computed and non-zero otherwise.

An example is given in Section 2.1.

30 3 CALLABLE LIBRARY FUNCTIONS

gst rsmt

Given a set of points (or terminals) in the plane, construct a rectilinear SMT for

the points. The length of the constructed SMT, the Steiner points and the list of

line segments in the SMT are returned.

Any of the output parameters may be set to NULL if the corresponding output is

not needed. It is the responsibility of the user to allocate sufficient memory for

the output arrays.

int gst_rsmt (int nterms,

double* terms,

double* length,

int* nsps,

double* sps,

int* nedges,

int* edges,

int* status,

gst_param_ptr param);

nterms Number of points (or terminals).

terms Input point coordinates (x1, y1, x2, y2, . . .).

length Length of computed SMT.

nsps Number of Steiner points.

sps Steiner point coordinates.

edges
Edges of SMT (terminals have index 0 to nterms-1

while Steiner points have index nterms and up).

status Solution status code (see page 113).

param Parameter set (NULL=default parameters).

Returns value zero if an SMT was computed and non-zero otherwise.

An example is given in Section 2.1.

3.5 High-level optimization functions 31

gst osmt

Given a set of points (or terminals) in the plane, construct an octilinear SMT for

the points. The length of the constructed SMT, the Steiner points and the list of

line segments in the SMT are returned.

Any of the output parameters may be set to NULL if the corresponding output is

not needed. It is the responsibility of the user to allocate sufficient memory for

the output arrays.

int gst_osmt (int nterms,

double* terms,

double* length,

int* nsps,

double* sps,

int* nedges,

int* edges,

int* status,

gst_param_ptr param);

nterms Number of points (or terminals).

terms Input point coordinates (x1, y1, x2, y2, . . .).

length Length of computed SMT.

nsps Number of Steiner points.

sps Steiner point coordinates.

edges

Edges of SMT (terminals have indices 0 to nterms-

1 while Steiner points have indices nterms and up).

status Solution status code (see page 113).

param Parameter set (NULL=default parameters).

Returns value zero if an SMT was computed and non-zero otherwise.

An example is given in Section 2.1.

32 3 CALLABLE LIBRARY FUNCTIONS

gst hgmst

Given an edge-weighted hypergraph, construct a minimum spanning tree (MST)

in this hypergraph.

Any of the output parameters may be set to NULL if the corresponding output is

not needed. It is the responsibility of the user to allocate sufficient memory for

the output arrays.

int gst_hgmst (int nverts,

int nedges,

int* edge_sizes,

int* edges,

double* weights,

double* length,

int* nmstedges,

int* mstedges,

int* status,

gst_param_ptr param);

nverts Number of vertices in the hypergraph.

nedges Number of edges in the hypergraph.

edge sizes Array giving number of vertices in each edge

edges Array of vertices contained in each edge.

weights Array of edge weights.

nmstedges Number of edges in the minimum spanning tree.

mstedges
Array of edges contained in the minimum spanning

tree.
status Solution status code (see page 113).

param Parameter set (NULL=default parameters).

Returns value zero if an MST was computed and non-zero otherwise.

3.5 High-level optimization functions 33

Example:

static int edge_sizes [] = {2, 2, 2, 3};

static int edges [] = {0, 1, /* edge 0 */

0, 2, /* edge 1 */

1, 2, /* edge 2 */

0, 1, 2}; /* edge 3 */

static double weights [] = {3.0, 2.0, 1.0, 4.0};

double length;

int code, i, nmstedges, mstedges [2];

code = gst_hgmst (3, /* nverts */

4, /* nedges */

edge_sizes,

edges,

weights,

&length,

&nmstedges,

mstedges,

NULL, /* ignore status */

NULL); /* use default parameters */

if (code != 0) {

fprintf (stderr, "Return code = %d\n", code);

exit (1);

}

printf ("Optimal solution = %g: ", length);

for (i = 0; i < nmstedges; i++) {

printf (" %d", mstedges [i]);

}

printf ("\n");

34 3 CALLABLE LIBRARY FUNCTIONS

3.6 Parameter setting and querying functions

A parameter set is an object that holds values for all parameters in the library. The

library provides the following operations on parameter sets:

• create a parameter set having “default” values,

• change parameter settings in a parameter set,

• query the current, default, minimum and maximum values of any parameter,

• query the type of a parameter,

• copy an existing parameter set,

• free a parameter set.

Parameter sets have type gst param ptr. Various library functions require a

parameter set to be provided as an argument. In all such cases it is valid for the

caller to pass a NULL pointer, in which case default settings will be used for all

parameters.

Each supported parameter has a specific type. When querying the type of a pa-

rameter, the library responds with an integer value that denotes the corresponding

parameter type. The parameter types supported, together with the integer values

that denote them are as follows:

Type Macro Name Value

int GST PARAMTYPE INTEGER 1

double GST PARAMTYPE DOUBLE 2

char* GST PARAMTYPE STRING 3

gst channel ptr GST PARAMTYPE CHANNEL 4

Externally each parameter has a unique number defined by a GST PARAM macro

(see Appendix A). This macro is used as an argument to the parameter get/set

functions. Note that there are distinct parameter get/set functions for each param-

eter type.

3.6 Parameter setting and querying functions 35

gst create param

Create a new parameter set with default parameters.

gst_param_ptr gst_create_param (int* status);

status
Status code (zero if operation was successful and non-

zero otherwise).

Returns new parameter set with default parameters.

Example:

int status;

/* Create a default parameter set */

gst_param_ptr myparam = gst_create_param(&status);

/* Change one parameter to a non-default value */

gst_set_int_param(myparam, GST_MAX_FST_SIZE, 4);

/* Use the new parameter set...*/

36 3 CALLABLE LIBRARY FUNCTIONS

gst copy param

Copy all parameter values from one parameter set into another.

int gst_copy_param (gst_param_ptr dst,

gst_param_ptr src);

dst
Parameter set that should be overwritten. If NULL,

this routine does nothing.

src
Parameter set that should be copied. A NULL pointer

is handled as the default set of parameters.

Returns zero if the parameter set was copied successfully.

Example:

/* Assume that param1 is an existing parameter set */

gst_param_ptr param2 = gst_create_param(NULL);

if (gst_copy_param (param2, param1)) {

printf("Could not copy parameter set.\n");

exit(1);

}

/* At this point param2 is a copy of param1 */

3.6 Parameter setting and querying functions 37

gst free param

Free parameter set. Freeing a parameter set that is still referenced by any other

GeoSteiner object (e.g., by a problem solution state object) produces undefined

behavior.

int gst_free_param (gst_param_ptr param);

param
Parameter set that should be freed. If NULL, this rou-

tine does nothing.

Returns zero if the parameter set was freed successfully.

Example:

/* Free existing parameter set myparam */

gst_free_param(myparam);

38 3 CALLABLE LIBRARY FUNCTIONS

gst set dbl param

Change value of a specified double parameter in a given parameter set.

int gst_set_dbl_param (gst_param_ptr param,

int whichparam,

double newvalue);

param Parameter set.

whichparam
Parameter ID of double parameter to modify

(GST PARAM macro).

newvalue New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

/* Set a CPU time limit of 0.5 seconds for parameter set myparam */

gst_set_dbl_param(myparam, GST_PARAM_CPU_LIMIT, 0.5);

3.6 Parameter setting and querying functions 39

gst get dbl param

Get current value of a specified double parameter from a given parameter set.

int gst_get_dbl_param (gst_param_ptr param,

int whichparam,

double* value);

param Parameter set.

whichparam
Parameter ID of double parameter to access

(GST PARAM macro).

value
Current value of parameter (pointer to double vari-

able).

Returns zero if the parameter was accessed successfully.

Example:

double cpulimit;

gst_get_dbl_param(myparam, GST_PARAM_CPU_LIMIT, &cpulimit);

printf ("The current CPU time limit is %.2f.\n", cpulimit);

40 3 CALLABLE LIBRARY FUNCTIONS

gst query dbl param

Query properties of a specified double parameter in a given parameter set.

int gst_query_dbl_param (gst_param_ptr param,

int whichparam,

double* current_value,

double* default_value,

double* min_value,

double* max_value);

param Parameter set.

whichparam
Parameter ID of double parameter to query

(GST PARAM macro).

current value
Current value of parameter (pointer to double vari-

able).

default value
Default value of parameter (pointer to double vari-

able).

min value
Minimum value of parameter (pointer to double vari-

able).

max value
Maximum value of parameter (pointer to double vari-

able).

Each of the last four arguments may be NULL if the corresponding value is not

needed.

Returns zero if the parameter was queried successfully.

3.6 Parameter setting and querying functions 41

Example:

/* myparam is an existing parameter set */

double curval, defval, minval, maxval;

if (gst_query_dbl_param (myparam,

GST_PARAM_GAP_TARGET,

&curval,

&defval,

&minval,

&maxval) != 0) {

fprintf (stderr, "Parameter query failed.\n");

exit (1);

}

printf ("Gap target: current=%g, default=%g, min=%g, max=%g.\n",

curval, defval, minval, maxval);

42 3 CALLABLE LIBRARY FUNCTIONS

gst set int param

Change value of a specified integer parameter in a given parameter set.

int gst_set_int_param (gst_param_ptr param,

int whichparam,

int newvalue);

param Parameter set.

whichparam
Parameter ID of integer parameter to modify

(GST PARAM macro).

newvalue New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

/* Collect the 10 best solutions. */

gst_set_int_param (myparam, GST_PARAM_NUM_FEASIBLE_SOLUTIONS, 10);

3.6 Parameter setting and querying functions 43

gst get int param

Get current value of a specified integer parameter from a given parameter set.

int gst_get_int_param (gst_param_ptr param,

int whichparam,

int* value);

param Parameter set.

whichparam
Parameter ID of integer parameter to access

(GST PARAM macro).

value
Current value of parameter (pointer to integer vari-

able).

Returns zero if the parameter was accessed successfully.

Example:

int vlimit;

gst_get_int_param(myparam, GST_PARAM_BACKTRACK_MAX_VERTS, &vlimit);

printf ("The current backtrack search vertex limit is %d.\n", vlimit);

44 3 CALLABLE LIBRARY FUNCTIONS

gst query int param

Query properties of a specified integer parameter in a given parameter set.

int gst_query_int_param (gst_param_ptr param,

int whichparam,

int* current_value,

int* default_value,

int* min_value,

int* max_value);

param Parameter set.

whichparam
Parameter ID of integer parameter to query

(GST PARAM macro).

current value
Current value of parameter (pointer to integer vari-

able).

default value
Default value of parameter (pointer to integer vari-

able).

min value
Minimum value of parameter (pointer to integer vari-

able).

max value
Maximum value of parameter (pointer to integer vari-

able).

Each of the last four arguments may be NULL if the corresponding value is not

needed.

Returns zero if the parameter was queried successfully.

3.6 Parameter setting and querying functions 45

Example:

/* param is an existing parameter set */

int curval, defval, minval, maxval;

if (gst_query_int_param (param,

GST_PARAM_BRANCH_VAR_POLICY,

&curval,

&defval,

&minval,

&maxval) != 0) {

fprintf (stderr, "Parameter query failed.\n");

exit (1);

}

printf ("Branch variable policy: "

"current=%g, default=%g, min=%g, max=%g.\n",

curval, defval, minval, maxval);

46 3 CALLABLE LIBRARY FUNCTIONS

gst set str param

Change value of a specified string parameter in a given parameter set.

int gst_set_str_param (gst_param_ptr param,

int whichparam,

const char* str);

param Parameter set.

whichparam
Parameter ID of string parameter to access

(GST PARAM macro).

chan New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

/* Establish a name for my problem instance. */

#define MY_INSTANCE_NAME_PARAM -123

int code;

code = gst_set_str_param (myparam,

MY_INSTANCE_NAME_PARAM,

"Bowser");

if (code != 0) {

fprintf (stderr, "gst_set_str_param failed.\n");

exit (1);

}

3.6 Parameter setting and querying functions 47

gst get str param

Get current value of a specified string parameter in a given parameter set.

int gst_get_str_param (gst_param_ptr param,

int whichparam,

int* length,

char* str);

param Parameter set.

whichparam
Parameter ID of string parameter to access

(GST PARAM macro).

length

The length of the string is written to this integer (un-

less it is a NULL pointer). A length of -1 indicates

that the parameter has the value NULL, which is dis-

tinct from a string of length zero.

str
The current value for this parameter is copied to the

string provided here (unless it is a NULL pointer).

Returns zero if the parameter was accessed successfully.

48 3 CALLABLE LIBRARY FUNCTIONS

Example:

#define MY_INSTANCE_NAME_PARAM -123

int code, length;

char* value;

/* First, get length of the string. */

gst_set_str_param (myparam,

MY_INSTANCE_NAME_PARAM,

&length,

NULL);

value = NULL;

if (length >= 0) {

/* Allocate buffer to receive string value. */

value = (char *) malloc (length + 1);

code = gst_set_str_param (myparam,

MY_INSTANCE_NAME_PARAM,

NULL,

value);

}

printf ("My problem instance name = %s\n",

(value == NULL) ? "<null>" : value);

if (value != NULL) {

free (value);

}

3.6 Parameter setting and querying functions 49

gst set chn param

Change value of a specified channel parameter in a given parameter set.

int gst_set_chn_param (gst_param_ptr param,

int whichparam,

gst_channel_ptr chan);

param Parameter set.

whichparam
Parameter ID of a channel parameter to modify

(GST PARAM macro).

chan New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

int code;

gst_channel_ptr chan;

/* Create a channel directed to stdout. */

chan = gst_create_channel (NULL, NULL);

gst_channel_add_file (chan, stdout, NULL);

/* Direct solver trace info to stdout. */

code = gst_set_chn_param (myparam, GST_PARAM_PRINT_SOLVE_TRACE, chan);

if (code != 0) {

fprintf (stderr, "gst_set_chn_param failed.\n");

exit (1);

}

50 3 CALLABLE LIBRARY FUNCTIONS

gst get chn param

Get current value of a specified channel parameter from a given parameter set.

int gst_get_chn_param (gst_param_ptr param,

int whichparam,

gst_channel_ptr* chan);

param Parameter set.

whichparam
Parameter ID of channel parameter to access

(GST PARAM macro).

chan
Current value for this parameter (pointer to channel

variable).

Returns zero if the parameter was accessed successfully.

Example:

int code;

gst_channel_ptr chan;

/* Get current solver trace channel. */

code = gst_get_chn_param (myparam,

GST_PARAM_PRINT_SOLVE_TRACE,

&chan);

if (code != 0) {

fprintf (stderr, "gst_get_chn_param failed.\n");

exit (1);

}

if (chan != NULL) {

/* Turn off the trace and destroy the channel. */

gst_set_chn_param (myparam,

GST_PARAM_PRINT_SOLVE_TRACE,

NULL);

gst_free_channel (chan);

}

3.6 Parameter setting and querying functions 51

gst get param id

Translate a parameter name into the corresponding parameter id.

int gst_get_param_id (const char* param_name,

int* param_id);

param name
The name of a parameter (e.g., ”max fst size”, or

”GST PARAM MAX FST SIZE”).

param id

Address of an integer to store the parameter ID corre-

sponding to the given parameter name. This will be

-1 for unknown or unrecognizable parameter names.

The param id argument can be NULL, if the actual

parameter ID value is not required.

Returns zero if the param name was recognized and the parameter ID was suc-

cessfully found.

Example:

int parmid;

if (gst_get_param_id ("save_format", &parmid) != 0) {

fprintf (stderr, "gst_get_param_id failed.\n");

exit (1);

}

printf ("Parameter ID: %d\n", parmid);

52 3 CALLABLE LIBRARY FUNCTIONS

gst get param type

Get the type of a specified parameter id.

int gst_get_param_type (int whichparam,

int* type);

whichparam Parameter ID to query (GST PARAM macro).

type

This integer is set to the type of the parameter. The

parameter types and their encodings as integer values

are given in the table on page 34.

Returns zero if the type was found successfully.

Example:

char* str;

int parmtype;

if (gst_get_param_type (GST_PARAM_SAVE_FORMAT, &parmtype) != 0) {

fprintf (stderr, "gst_get_param_type failed.\n");

exit (1);

}

switch (parmtype) {

case GST_PARAMTYPE_INTEGER: str = "int"; break;

case GST_PARAMTYPE_DOUBLE: str = "double"; break;

case GST_PARAMTYPE_STRING: str = "string"; break;

case GST_PARAMTYPE_CHANNEL: str = "channel"; break;

default: str = "unknown"; break;

}

printf ("Parameter is of type %s.\n", str);

3.6 Parameter setting and querying functions 53

gst set param

Set the value of a named parameter from the given string. This routine permits

the value of any integer, double or string parameter to be set to the value given in

text string form. This is a convenient way to set parameters from command line

arguments.

int gst_set_param (gst_param_ptr param,

const char* name,

const char* value);

param Parameter set.

name Name of parameter to set (see Appendix A).

value Text string containing data value to set.

Example:

int main (int argc, char **argv)

{

int i, j;

char * ap;

gst_channel_ptr myparm;

gst_open_geosteiner (NULL);

myparam = gst_create_param (NULL);

/* Parse arguments such as: -ZBRANCH_VAR_POLICY 3 */

for (i = 1; i < argc; i++) {

ap = argv [i];

if ((ap[0] != ’-’) || (ap[1] != ’Z’)) usage ();

j = gst_set_param (myparam, &ap[2], argv [i+1]);

if (j != 0) usage ();

++i;

}

/* Parameters are now set... */

}

54 3 CALLABLE LIBRARY FUNCTIONS

3.7 Metric setting and querying functions

The support of different metrics in the GeoSteiner library is primarily handled by

metric objects. Some functions in the library use these metric objects automat-

ically, e.g., gst esmt(), while others require one to specify a metric object, e.g.,

gst smt(). The metric objects provide a simple way to make general applications

support several different metrics. An example of this can be found in the demo

program demo2.c which is the code for a small program supporting all metrics

supported by GeoSteiner.

Two Lp-metrics, L1 (rectilinear) and L2 (Euclidean), are supported. Also, all

uniform metrics — so-called λ-metrics — are supported. The latter are metrics

where only a limited number λ ≥ 2 of equally-spaced orientations are allowed for

the edges in a solution. For λ = 2 this is identical to the rectilinear metric, L1.

When a metric object has been created, the distance between two points in the

metric can be obtained by calling gst distance(). This is especially useful for the

λ-metrics for which efficient calculation is non-trivial.

The following macros are used for identifying the supported metrics:

Metric Type Macro Name Value

None GST METRIC NONE 0

Lp GST METRIC L 1

Uniform GST METRIC UNIFORM 2

3.7 Metric setting and querying functions 55

gst create metric

A metric is defined by a type and a parameter. For the Lp-metric this parameter p

must be either 1 or 2, and for the λ-metric we must have λ ≥ 2.

Note that even though the L1-metric and the λ-metric with parameter 2 are the

same (rectilinear metric), you cannot expect them to give exactly the same results

when used to solve Steiner problems. The first one will result in the use of a

dedicated FST generator for the rectilinear problem and the latter will result in the

use of a general FST generator for λ-metrics. If you are aiming for speed then use

the L1-metric.

gst_metric_ptr gst_create_metric (int type,

int parameter,

int* status);

type
Metric type (see macro values in the table on

page 54).

parameter Metric parameter.

status
Status code (zero if operation was successful and non-

zero otherwise).

Returns new metric object.

Example:

/* Creating a Euclidean metric object */

gst_metric_ptr metric;

metric = gst_create_metric (GST_METRIC_L, 2, NULL);

/* And use it as a parameter to gst_smt */

gst_smt (nterms, terms, &length, NULL, NULL, NULL, NULL, NULL,

metric, NULL);

56 3 CALLABLE LIBRARY FUNCTIONS

gst free metric

Free an existing metric object. Freeing a metric object that is still referenced

by any other GeoSteiner object (e.g., a hypergraph object) produces undefined

behavior.

int gst_free_metric (gst_metric_ptr metric);

metric Metric object. Does nothing if NULL.

Returns zero if operation was successful.

Example:

/* Free parameter object mymetric */

gst_free_metric (mymetric);

3.7 Metric setting and querying functions 57

gst copy metric

Copy attributes from one metric object to another.

int gst_copy_metric (gst_metric_ptr dst,

gst_metric_ptr src);

dst Metric object that should be overwritten.

src

Metric that should be copied. A NULL pointer is

considered as a ”None” metric type (see table on

page 54).

Returns zero if metric object was copied.

Example:

gst_metric_ptr newmetric;

newmetric = gst_create_metric (GST_METRIC_NONE, 0);

gst_copy_metric (newmetric, oldmetric);

/* newmetric is now the same metric as oldmetric. */

58 3 CALLABLE LIBRARY FUNCTIONS

gst distance

Compute the distance between two points under a given metric.

double gst_distance (gst_metric_ptr metric,

double x1,

double y1,

double x2,

double y2);

metric Metric object.

x1 X-coordinate for first point.

y1 Y-coordinate for first point.

x2 X-coordinate for second point.

y2 Y-coordinate for second point.

Returns the distance. Returned value is always zero if metric type is ”None”.

Example:

/* Assume that mymetric is a metric object. */

/* Compute distance between points (0,0) and (1,1). */

double d;

d = gst_distance (mymetric, 0.0, 0.0, 1.0, 1.0);

3.7 Metric setting and querying functions 59

gst get metric info

Get the information about a metric object.

int gst_get_metric_info (gst_metric_ptr metric,

int* type,

int* parameter);

metric Metric object.

type
A pointer to an integer in which to place the metric

type. See the possible types in the table on page 54.

parameter

An optional pointer to an integer in which to place the

metric parameter. See the possible parameters in the

description of gst create metric().

Returns zero if operation was successful. Either of the last two arguments may be

NULL if the corresponding value is not needed.

Example:

/* Let mymetric be a metric object */

int type, parameter;

gst_get_metric_info (mymetric, &type, ¶meter);

switch (type) {

case GST_METRIC_NONE:

printf ("Metric is None.\n");

break;

case GST_METRIC_L:

printf ("Metric is L%d.\n", parameter);

break;

case GST_METRIC_UNIFORM:

printf ("Metric is Uniform %d.\n", parameter);

break;

default:

printf ("Metric is unknown!\n");

}

60 3 CALLABLE LIBRARY FUNCTIONS

3.8 Property list setting and querying functions

Property lists can be used to hold values which are rarely updated (the data struc-

ture holding the information cannot be queried/updated in constant time). The

following basic operations are provided by the library:

• create an empty property list,

• set/create a value in a property list,

• delete a value from a property list,

• get a value in a property list,

• query the type of a property,

• copy a property list,

• free a property list (including its content).

A property list has type gst proplist ptr and a property is known by its

property ID (a macro name which expands to a signed integer).

The main purpose of property lists is to make extra information about the solution

process available to the user through a simple interface. Any property ID with a

value larger than or equal to zero is reserved by the library. Negative values can be

freely used by the user. The property ID values (and their macro names) currently

in use can be found in Appendices B and C.

Note that there are distinct property get/set functions for different property types.

The type of a given property — which is an integer — can be queried. The sup-

ported property types, together with the integer values that denote them are as

follows:

Type Macro Name Value

int GST PROPTYPE INTEGER 1

double GST PROPTYPE DOUBLE 2

char* GST PROPTYPE STRING 3

3.8 Property list setting and querying functions 61

gst create proplist

Create a new empty property list.

gst_proplist_ptr

gst_create_proplist (int* status);

status

Status code (zero if operation was successful and non-

zero otherwise). May be NULL if value is not needed.

Returns new property list.

Example:

gst_proplist_ptr plist;

int status;

plist = gst_create_proplist (&status);

if (status != 0) {

fprintf (stderr, "Unable to create property list.\n");

exit (1);

}

gst_set_int_property (plist, GST_PROP_SOLVER_ROOT_OPTIMAL, 1);

62 3 CALLABLE LIBRARY FUNCTIONS

gst free proplist

Free an existing property list. Freeing a property list that is still referenced by

existing GeoSteiner objects (e.g., hypergraphs and solvers) results in undefined

behavior. In most cases it is an error to free a property list that was not obtained

via a call to gst create proplist().

int gst_free_proplist (gst_proplist_ptr plist);

plist
A property list to free. If NULL, this routine does

nothing.

Returns a status code (zero if operation was successful and non-zero otherwise).

Example:

gst_proplist_ptr plist;

plist = gst_create_proplist (NULL);

/* Various operations on plist... */

gst_free_proplist (plist);

3.8 Property list setting and querying functions 63

gst copy proplist

Empty the destination property list and copy all properties into it from the source

property list.

int gst_copy_proplist (gst_proplist_ptr dst,

gst_proplist_ptr src);

dst Property list that should be overwritten.

src
Property list that should be copied. A NULL pointer

is handled as an empty property list.

Returns zero if the property list was copied successfully.

Example:

/* We assume that H is a hypergraph... */

gst_proplist_ptr copy;

copy = gst_create_proplist (NULL);

if (gst_copy_proplist (copy, gst_get_hg_properties(H)) == 0) {

/* We have now created a copy of the property list for H */

}

else {

/* Something went wrong */

}

/* Use new copy of property list... */

/* Free copy */

gst_free_proplist (copy);

64 3 CALLABLE LIBRARY FUNCTIONS

gst get property type

Query the type of a given property.

int gst_get_property_type (gst_proplist_ptr plist,

int propid,

int* type);

plist An existing property list.

propid A property ID value.

type
Pointer to an integer which will be overwritten with

the type of the property.

Return a status code (zero if operation was successful and non-zero otherwise).

Example:

/* We assume that H is a hypergraph... */

int type;

if (gst_get_property_type (gst_get_hg_properties(H),

GST_PROP_HG_GENERATION_TIME,

&type) != 0) {

/* Something went wrong */

}

else {

switch (type) {

case GST_PROPTYPE_INTEGER: /* Property is an integer value */

break;

case GST_PROPTYPE_DOUBLE: /* Property is a floating point value */

break;

case GST_PROPTYPE_STRING: /* Property is a string value */

break;

default: /* Something went wrong */

}

}

3.8 Property list setting and querying functions 65

gst delete property

Remove any value that might be defined for the given property ID, regardless of

type.

int gst_delete_property (gst_proplist_ptr plist,

int propid);

plist Property list.

propid ID of property to delete.

Returns zero if the property was successfully deleted from the property list.

Returns GST ERR INVALID PROPERTY LIST if the property list itself is in-

valid.

Returns GST ERR PROPERTY NOT FOUND if no property having the given ID

exists.

Example:

/* We are given a property list plist */

#define MY_PROPERTY_ID -1000

gst_delete_property (plist, MY_PROPERTY_ID);

/* plist no longer has any value defined */

/* for property ID -1000. */

66 3 CALLABLE LIBRARY FUNCTIONS

gst get dbl property

Get the value of a specified double property from a given property list. The spec-

ified property must be of type double or an error is returned. ID values greater

than or equal to zero are reserved for GeoSteiner’s use. Negative ID values can be

freely used by user applications.

int gst_get_dbl_property (gst_proplist_ptr plist,

int propid,

double* value);

plist Property list.

propid ID of double property to retrieve.

value
Current value of property (pointer to double variable).

May be NULL if value is not needed.

Returns zero if the property was accessed successfully.

Returns GST ERR PROPERTY NOT FOUND if no property having the given ID

exists.

Returns GST ERR PROPERTY TYPE MISMATCH if the property exists but does

not have type double.

Example:

/* We are given a property list plist and a double value has

been set for the ID value GST_PROP_USER_MYVALUE */

#define GST_PROP_USER_MY_DBL_VALUE -1000

double value;

gst_get_dbl_property (plist,

GST_PROP_USER_MY_DBL_VALUE,

&value);

printf ("My_dbl_value is currently set at %.2f.\n", value);

3.8 Property list setting and querying functions 67

gst get int property

Get the value of a specified property from the given property list. The specified

property must be of type integer or an error is returned. ID values greater than or

equal to zero are reserved for GeoSteiner’s use. Negative ID values can be freely

used by user applications.

int gst_get_int_property (gst_proplist_ptr plist,

int propid,

int* value);

plist Property list.

propid ID of integer property to retrieve.

value
Current value of property (pointer to integer variable).

May be NULL if value is not needed.

Returns zero if the property was accessed successfully.

Returns GST ERR PROPERTY NOT FOUND if no property having the given ID

exists.

Returns GST ERR PROPERTY TYPE MISMATCH if the property exists but does

not have type integer.

Example:

/* We are given a property list plist and an integer value has

been set for the ID value GST_PROP_USER_MY_INT_VALUE */

#define GST_PROP_USER_MY_INT_VALUE -1001

int value;

gst_get_int_property (plist,

GST_PROP_USER_MY_INT_VALUE,

&value);

printf ("My_int_value is currently set at %d.\n", value);

68 3 CALLABLE LIBRARY FUNCTIONS

gst get str property

Get the value of a specified property from the given property list. The specified

property must be of type string or an error is returned. ID values greater than or

equal to zero are reserved for GeoSteiner’s use. Negative ID values can be freely

used by user applications.

int gst_get_str_property (gst_proplist_ptr plist,

int propid,

int* length,

char* str);

plist Property list.

propid ID of string property to retrieve.

length

The length of the string is written to this integer (un-

less it is a NULL pointer). The returned length does

not include the terminating null character. The re-

turned length is -1 if the property value is a NULL

pointer (which is distinct from a zero length string).

str
The current value for this parameter is copied into the

buffer provided here (unless it is a NULL pointer).

Returns zero if the property was accessed successfully.

Returns GST ERR PROPERTY NOT FOUND if no property having the given ID

exists.

Returns GST ERR PROPERTY TYPE MISMATCH if the property exists but does

not have type string.

3.8 Property list setting and querying functions 69

Example:

int code, length;

char* buf;

buf = NULL;

code = gst_get_str_property (plist, GST_PROP_HG_NAME,

&length, NULL);

if ((code == 0) && (length >= 0)) {

buf = (char *) malloc (length + 1);

gst_get_str_property (plist,

GST_PROP_HG_NAME,

NULL,

buf);

}

printf ("Hypergraph name is %s\n",

(buf == NULL) ? "<NULL>" : buf);

if (buf != NULL) free (buf);

70 3 CALLABLE LIBRARY FUNCTIONS

gst get properties

Retrieve all property IDs and their types from the given property list.

int gst_get_properties (gst_proplist_ptr plist,

int* count,

int* propids,

int* types);

plist Property list.

count
Number of properties in the given plist (unless it is

a NULL pointer).

propids
Buffer to receive the property IDs of each property in

plist (unless it is a NULL pointer).

types
Buffer to receive the types of each property in plist

(unless it is a NULL pointer).

Returns zero if the properties were successfully retrieved.

Example:

int count;

int* propids;

int* types;

code = gst_get_properties (plist, &count, NULL, NULL);

if (code != 0) {

/* Something went wrong. */

exit (1);

}

propids = (int *) malloc (count * sizeof (int));

types = (int *) malloc (count * sizeof (int));

gst_get_properties (plist, NULL, propids, types);

for (i = 0; i < count; i++) {

printf ("Propid = %d, type = %d.\n",

propids [i], types [i]);

}

free (types);

free (propids);

3.8 Property list setting and querying functions 71

gst set dbl property

Change or create a specified property in the given property list. The property is

added to the list if not already present. If the property already exists, its type is

forced to be double. It is legal to do this with any property list.

int gst_set_dbl_property (gst_proplist_ptr plist,

int propid,

double value);

plist Property list.

propid ID of double property to create or modify.

newvalue New value for this property.

Returns zero if the property was set successfully.

Example:

/* Assume we are given a property list plist */

#define GST_PROP_USER_MY_DBL_VALUE -1000

gst_set_dbl_property (plist, GST_PROP_USER_MY_DBL_VALUE, 2.71828);

72 3 CALLABLE LIBRARY FUNCTIONS

gst set int property

Change or create a a specified property in the given property list. The property is

added to the list if not already present. If the property already exists, its type is

forced to be integer. It is legal to do this with any property list.

int gst_set_int_property (gst_proplist_ptr plist,

int propid,

int value);

plist Property list.

propid ID of integer property to create or modify.

newvalue New value for this property.

Returns zero if the property was set successfully.

Example:

/* Assume we are given a property list plist */

#define GST_PROP_USER_MY_INT_VALUE -1001

gst_set_int_property (plist, GST_PROP_USER_MY_INT_VALUE, 42);

3.8 Property list setting and querying functions 73

gst set str property

Change or create a specified property in the given property list. The property is

added to the list if not already present. If the property already exists, its type is

forced to be string. It is legal to do this with any property list.

int gst_set_str_property (gst_proplist_ptr plist,

int propid,

const char* value);

plist Property list.

propid ID of string property to create or modify.

newvalue New value for this property.

Returns zero if the property was set successfully.

Example:

/* Assume we are given a property list plist */

gst_set_str_property (plist, GST_PROP_HG_NAME, "Oobleck");

74 3 CALLABLE LIBRARY FUNCTIONS

3.9 Hypergraph functions

The hypergraph object represents an arbitrary hypergraph that can be decorated

with a variety of additional (and optional) data. For example, the edges can be

given weights. In general, the goal of GeoSteiner is to find a spanning tree of

minimum total weight using the edges of the hypergraph.

In this section we document all of the operations provided for creating, destroying

and manipulating hypergraph objects.

Hypergraphs can be embedded in the plane: Vertices can be given coordinates

and hyperedges can be associated with trees in the plane. Also, every hypergraph

has an associated metric object (Section 3.7), a scaling object (Section 3.14) and

a property list (Section 3.8).

The library interfaces have been designed to permit maximum flexibility in using

the various operations provided. For example, it is intended that the user be able

to define a hypergraph, solve it, modify some attributes of the hypergraph (e.g.,

change some of the edge costs), and re-solve the modified problem. The library

should be smart enough to know when the problem can be re-solved starting from

the most recent solution state — and when it is necessary to discard the previous

solution state and re-solve the current problem from scratch.

3.9 Hypergraph functions 75

gst create hg

Create an instance of an empty hypergraph. The hypergraph initially has no ver-

tices and no edges. After creating an empty hypergraph, the next step is normally

to give it the desired number of vertices using gst set hg number of vertices(),

and then add the edges using gst set hg edges(). Doing the steps in this order

avoids the failure that would result from attempting to add edges that refer to

non-existent vertices.

gst_hg_ptr gst_create_hg (int* status);

status

Status code (zero if the operation was successful and

non-zero otherwise). May be NULL if the value is not

needed.

Returns new hypergraph object.

Example:

gst_hg_ptr h;

int status;

h = gst_create_hg (&status);

if (status != 0) {

/* Something went wrong */

}

/* Make it be a complete hypergraph on 3 vertices */

status = gst_set_hg_number_of_vertices (h, 3);

if (status != 0) {

/* Error */

}

else {

static int edge_sizes [] = {2, 2, 2, 3};

static int edges [] = {0, 1, 0, 2, 1, 2, 0, 1, 2};

status = gst_set_hg_edges (h, 4, edge_sizes, edges, NULL);

}

76 3 CALLABLE LIBRARY FUNCTIONS

gst copy hg

Make a copy of a given hypergraph. Any data associated with the destination

hypergraph is discarded, and the following attributes are copied from the source

hypergraph (if present): vertices, edges, edge weights, metric object info, scale

object info, property list, vertex embedding, and edge embedding.

int gst_copy_hg (gst_hg_ptr dst,

gst_hg_ptr src);

dst
Destination hypergraph object. All existing data in

the destination is discarded.
src Source hypergraph object to copy.

Returns zero if the hypergraph was copied successfully.

Example:

/* Assume that h is an existing hypergraph */

gst_hg_ptr newhg;

newhg = gst_create_hg (NULL);

status = gst_copy_hg (newhg, h);

if (status != 0) {

fprintf (stderr, "Error copying hypergraph\n");

exit (1);

}

gst_set_hg_edge_weights (newhg, NULL);

/* newhg is now a copy of h, but with all edge weights = 1. */

3.9 Hypergraph functions 77

gst copy hg edges

Make a copy of a given hypergraph with a subset of the original edges. Any

data associated with the destination hypergraph is discarded, and the following

attributes are copied from the source hypergraph (if present): vertices, (subset of)

edges, (subset of) edge weights, metric object info, scale object info, property list,

vertex embedding, and edge embedding.

int gst_copy_hg_edges (gst_hg_ptr dst,

gst_hg_ptr src,

int nedges,

int* edges);

dst
Destination hypergraph object. All existing data in

the destination is discarded.
src Source hypergraph object to copy.

nedges Number of edges to copy from source hypergraph.

edges
Index values of edges to copy from source hyper-

graph.

Returns zero if (a subset of) the hypergraph was copied successfully.

Example:

/* Assume that h is an existing hypergraph with 10 edges */

static int edges [] = {2, 4, 6, 8};

gst_hg_ptr newhg;

newhg = gst_create_hg (NULL);

status = gst_copy_hg_edges (newhg, h, 4, edges);

if (status != 0) {

fprintf (stderr, "Error copying hypergraph\n");

exit (1);

}

/* newhg is now a copy of h but having only 4 of the edges of h */

78 3 CALLABLE LIBRARY FUNCTIONS

gst free hg

Remove a hypergraph and free all associated memory, including associated prop-

erties.

int gst_free_hg (gst_hg_ptr H);

H
Hypergraph to free. If NULL, this function does noth-

ing.

Returns zero if the hypergraph was freed successfully.

Example:

/* Assume that h is an existing hypergraph */

int status;

status = gst_free_hg (h);

if (status != 0) {

fprintf (stderr, "Error freeing hypergraph\n");

exit (1);

}

3.9 Hypergraph functions 79

gst set hg number of vertices

Define the number of vertices of a hypergraph.

int gst_set_hg_number_of_vertices (gst_hg_ptr H,

int nverts);

H Hypergraph.

nverts
Number of vertices H should have (non-negative num-

ber).

Returns zero if the number of vertices was set successfully.

Example:

/* Construct a hypergraph with 20 vertices (no error checking) */

gst_hg_ptr hg;

hg = gst_create_hg (NULL);

gst_set_hg_number_of_vertices (hg, 20);

80 3 CALLABLE LIBRARY FUNCTIONS

gst set hg edges

Define the set of edges of a hypergraph (default associated information).

int gst_set_hg_edges (gst_hg_ptr H,

int nedges,

int* edge_sizes,

int* edges,

double* weights);

H Hypergraph.

nedges Number of edges H should have.

edge sizes Number of vertices for each edge.

edges Vertex indices of each edge.

weights Edge weights (if NULL then all edge weights are 1).

Returns zero if the edges were defined successfully.

Example:

/* Construct a complete hypergraph on 3 vertices

with edge weights 1 (no error checking) */

gst_hg_ptr h;

static int edge_sizes [] = {2, 2, 2, 3};

static int edges [] = {0, 1, 0, 2, 1, 2, 0, 1, 2};

h = gst_create_hg (NULL);

gst_set_hg_number_of_vertices (h, 3);

gst_set_hg_edges (h, 4, edge_sizes, edges, NULL);

3.9 Hypergraph functions 81

gst set hg edge weights

Set all edge weights of a hypergraph.

int gst_set_hg_edge_weights (gst_hg_ptr H,

double* weights);

H Hypergraph.

weights

Array of edge weights of length equal to the number

of edges in H (if NULL then all edge weights are set

to 1).

Returns zero if the edges weights were set successfully.

Example:

/* Assume that h is a hypergraph with 4 edges */

static double weights [] = {1.0, 2.0, 3.0, 4.0};

int status;

status = gst_set_hg_edge_weights (h, weights);

if (status != 0) {

fprintf (stderr, "Error setting edge weights\n");

exit (1);

}

/* The edges of h now have weights 1, 2, 3 and 4 */

82 3 CALLABLE LIBRARY FUNCTIONS

gst set hg vertex embedding

Embed the vertices in a hypergraph in some k-dimensional space. (In the current

version only the 2-dimensional space, the plane, is supported.)

int gst_set_hg_vertex_embedding (gst_hg_ptr H,

int dim,

double* coords);

H Hypergraph whose vertices should be embedded.

dim
Dimension of space (currently only dimension 2 is

supported).

coords

Vertex coordinates (x1, y1, x2, y2, . . .). Length must

be the dimension times the number of vertices in the

hypergraph.

Returns zero if the vertices were embedded successfully.

Example:

/* Assume that h is an existing hypergraph with four vertices */

static double coords [] = {0, 0, 1, 0, 1, 1, 0, 1};

int status;

status = gst_set_hg_vertex_embedding (h, 2, coords);

if (status != 0) {

fprintf (stderr, "Error embedding vertices\n");

exit (1);

}

/* The four vertices of h are now embedded as

(0,0), (0,1), (1,1) and (0,1). */

3.9 Hypergraph functions 83

gst set hg metric

Set the metric object associated with a hypergraph.

int gst_set_hg_metric (gst_hg_ptr H,

gst_metric_ptr metric);

H Hypergraph.

metric

Metric object that should be associated with H (see

Section 3.7 for information on metric objects). If

NULL, then the hypergraph metric will be set to

”None”.

Returns zero if metric was set successfully.

Example:

/* Assume that h is an existing hypergraph */

/* Create a Euclidean metric object */

gst_metric_ptr metric;

metric = gst_create_metric (GST_METRIC_L, 2, NULL);

/* Associate it with h */

gst_set_hg_metric (h, metric);

84 3 CALLABLE LIBRARY FUNCTIONS

gst set hg scale info

Set the scaling information associated with a hypergraph.

int gst_set_hg_scale_info (gst_hg_ptr H,

gst_scale_info_ptr scinfo);

H Hypergraph.

scinfo

Scaling information that should be associated with

this hypergraph (see Section 3.14). If NULL, then no

scaling is used for this hypergraph.

Returns zero if the scaling information was set successfully.

Example:

/* Read a set points from stdin, generate FST hypergraph

and set scaling information */

gst_hg_ptr hg;

gst_scale_info_ptr scinfo;

int n;

double* terms;

n = gst_get_points (stdin, 0, &terms, scinfo);

hg = gst_generate_efsts (n, terms, NULL, NULL);

gst_set_hg_scale_info (hg, scinfo);

3.9 Hypergraph functions 85

gst get hg terminals

Get terminal vertices for a hypergraph. The terminal indices are returned in the

terms array.

int gst_get_hg_terminals (gst_hg_ptr H,

int* nterms,

int* terms);

86 3 CALLABLE LIBRARY FUNCTIONS

gst get hg number of vertices

Get the number of vertices of a hypergraph.

int gst_get_hg_number_of_vertices (gst_hg_ptr H);

H Hypergraph.

A return value of -1 implies that the hypergraph was invalid.

Example:

/* Assume that hg is an existing hypergraph */

int nverts;

nverts = gst_get_hg_number_of_vertices (hg);

/* nverts is now equal to the number of vertices in hg */

3.9 Hypergraph functions 87

gst get hg edges

Get the set of edges of a hypergraph. If any of the three final arguments is NULL,

the corresponding information is not returned. The user has to allocate space

for holding the returned data. Necessary sizes for arrays can be obtained by first

obtaining the number of edges, then the edge sizes and finally the vertices for each

edge (see example below).

int gst_get_hg_edges (gst_hg_ptr H,

int* nedges,

int* edge_sizes,

int* edges,

double* weight);

H Hypergraph.

nedges Number of edges in this hypergraph.

edge sizes
Number of vertices for each edge (pointer to an array

allocated by the user).

edges
Vertex indices of each edges (pointer to an array allo-

cated by the user).

weights
Edge weights (pointer to an array allocated by the

user).

Returns zero if the edges were queried successfully.

88 3 CALLABLE LIBRARY FUNCTIONS

Example:

/* Assume that H is some hypergraph */

int i, nedges, nedgeverts;

int* edge_sizes;

int* edges;

double* weight;

/* First we query the number of edges */

gst_get_hg_edges (H, &nedges, NULL, NULL, NULL);

/* Allocate space for edge sizes and edge weights */

edge_sizes = (int *) malloc (nedges * sizeof (int));

weight = (double *) malloc (nedges * sizeof (double));

/* Query edge sizes and weights */

gst_get_hg_edges (H, NULL, edge_sizes, NULL, weight);

/* Count the number of vertices in all edges */

nedgeverts = 0;

for (i = 0; i < nedges; i++)

nedgeverts += edge_sizes[i];

edges = (int *) malloc (nedgeverts * sizeof (int));

/* Finally query vertices of edges */

gst_get_hg_edges (H, NULL, NULL, edges, NULL);

3.9 Hypergraph functions 89

gst get hg one edge

Get information about one edge in the hypergraph. If any of the three last argu-

ments to the function is NULL, the corresponding information is not returned.

int gst_get_hg_one_edge (gst_hg_ptr H,

int edge_number,

double* weight,

int* nverts,

int* verts);

H Hypergraph.

edge number Edge number to query (first edge is number 0).

weight Weight of edge (pointer to a double variable).

nverts
Number of vertices in this edge (pointer to an int vari-

able).

terms
Vertex indices of this edges (pointer to an array allo-

cated by user).

Returns zero if the edge was queried successfully.

Example:

/* Assume that H is some hypergraph with at least 10 edges */

int nverts;

int* verts;

double weight;

/* Query edge number 10 */

gst_get_hg_one_edge (H, 10, &weight, &nverts, NULL);

/* Allocate space for vertex indices */

verts = (int *) malloc (nverts * sizeof (int));

/* Query vertex indices */

gst_get_hg_one_edge (H, 10, NULL, NULL, verts);

90 3 CALLABLE LIBRARY FUNCTIONS

gst get hg vertex embedding

Get the embedding of the vertices in a hypergraph.

int gst_get_hg_vertex_embedding (gst_hg_ptr H,

int* dim,

double* coords);

H Hypergraph whose vertices are embedded.

dim
Dimension of the space (pointer to an integer vari-

able).

coords

Array in which to place the vertex coordinates of the

embedding (x1, y1, x2, y2, . . .). This array must be al-

located by the user, and its length must be dimension

times the number of vertices in the hypergraph.

Returns zero if the embedding was returned successfully.

Example:

/* Assume that h is an existing hypergraph with four vertices

embedded in the plane */

double coords[8];

int status;

status = gst_get_hg_vertex_embedding(H, NULL, coords);

if (status != 0) {

fprintf (stderr, "Error querying vertex embedding\n");

exit (1);

}

/* coords now holds the coordinates of the embedded vertices */

3.9 Hypergraph functions 91

gst get hg one vertex embedding

Return the embedding of a single vertex in a hypergraph.

int gst_get_hg_one_vertex_embedding

(gst_hg_ptr H,

int vertex_number,

double* coords);

H Hypergraph whose vertices are embedded.

vertex number
Vertex number whose embedding should be queried

(first vertex is number 0).

coords

Coordinates of the vertex embedding (x1, y1). This ar-

ray must be allocated by the user, and its length equal

to the dimension of the space of the embedding.

Returns zero if the embedding was returned successfully.

Example:

/* Assume that h is an existing hypergraph with four vertices

embedded in the plane */

double coords[2];

int status;

/* Query embedding of vertex number 3 */

status = gst_get_hg_one_vertex_embedding(H, 3, coords);

if (status != 0) {

fprintf (stderr, "Error querying vertex embedding\n");

exit (1);

}

/* coords now holds the coordinates of vertex number 3 */

92 3 CALLABLE LIBRARY FUNCTIONS

gst get hg edge embedding

Return the embedding of a subset of edges in a hypergraph. If any of the four last

arguments to the function is NULL, the corresponding information is not returned.

int gst_get_hg_edge_embedding (gst_hg_ptr H,

int nhgedges,

int* hgedges,

int* nsps,

double* sps,

int* nedges,

int* edges);

H Hypergraph

nhgedges

Number of hyperedges that should be queried for em-

bedding information (when equal to 0 all edges are

returned).

hgedges

List of indices of hyperedges that should be queried.

If this argument is NULL then the first nhgedges are

returned.

nsps
Number of Steiner points in embedding of all queried

hyperedges (pointer to int variable).

sps
Coordinates of Steiner points in the embedded hyper-

edges (pointer to double array allocated by user).

nedges
Number of edges in the embedding (pointer to int

variable).

edges

Indices of the edge endpoints in embedding (pointer

to int array allocated by user). Let n be the number

of vertices in hypergraph H. Then hypergraph vertex

endpoints have indices 0 to n − 1 while Steiner end-

points have indices n and up.

Returns zero if the embedding was queried successfully.

3.9 Hypergraph functions 93

Example:

/* Assume that H is an embedded hypergraph with

5 vertices and 10 edges. The complete embedding

has 15 Steiner points and 30 edges. We would like

to get the embedding of hyperedges with even indices. */

int nsps;

int nedges;

double sps[30];

int edges[60];

static int hgedges [] = {0, 2, 4, 6, 8};

gst_get_hg_edge_embedding (H, 5, hgedges,

&nsps, sps, &nedges, edges);

/* Now sps contains the Steiner point coordinates,

while edges contain edge endpoints; hypergraph

vertices have endpoint indices 0..4 and Steiner

points endpoint indices 5..19. */

94 3 CALLABLE LIBRARY FUNCTIONS

gst get hg one edge embedding

Return the embedding of a single edge in a hypergraph. Note that the indices of

vertices spanned by an edge can be obtained by using gst get hg one edge().

int gst_get_hg_one_edge_embedding

(gst_hg_ptr H,

int edge_number,

int* nsps,

double* coords,

int* nedges,

int* edges);

H Hypergraph.

edge number
Hyperedge number whose embedding should be

queried (first hyperedge has number 0).

nsps
Number of Steiner points in the embedding for the

hyperedge (pointer to int variable).

coords
Coordinates of Steiner points in embedded hyperedge

(pointer to double array allocated by user).

nedges
Number of edges in the embedding (pointer to int

variable).

edges

Indices of edge endpoints in the embedding (pointer

to int array allocated by user). Let k be the number

of vertices in the hyperedge. Then hypergraph ver-

tex endpoints have indices 0 to k − 1 while Steiner

endpoints have indices k and up.

Returns zero if embedding was queried successfully.

3.9 Hypergraph functions 95

Example:

/* Assume that H is an embedded hypergraph with 10 edges.

We would like to get the embedding of hyperedge 7. */

int nsps;

int nedges;

double* sps;

int* edges;

gst_get_hg_one_edge_embedding (H, 7, &nsps, NULL, &nedges, NULL);

/* Allocate space */

sps = (double *) malloc (2*nsps * sizeof (double));

edges = (int *) malloc (2*nedges * sizeof (int));

gst_get_hg_one_edge_embedding (H, 7, NULL, sps, NULL, edges);

/* Now sps contains the Steiner point coordinates,

while edges contain edge endpoints. */

96 3 CALLABLE LIBRARY FUNCTIONS

gst get hg edge status

Return the pruning status of an edge. When gst prune edges runs, it may

determine that some edges are “required” (such edges must appear in any optimal

solution). It may also determine that certain other edges are “unneeded” (at least

one optimal solution exists that does not use any “unneeded” edge). By default,

edges are neither “unneeded” nor “required.” It is impossible for an edge to be

simultaneously “unneeded” and “required.”

int gst_get_hg_edge_status (gst_hg_ptr H,

int edge_number,

int* unneeded,

int* required);

H Hypergraph.

edge number Hyperedge whose pruning status should be queried.

unneeded
Non-zero if edge is “unneeded” (pointer to an int vari-

able).

required
Non-zero if edge is “required” (pointer to an int vari-

able).

Returns zero if pruning status was queried successfully.

3.9 Hypergraph functions 97

Example:

/* Assume that H is an embedded hypergraph with N

edges that has been pruned. We would like to

get the pruning status of its edges. */

int i, unneeded, required;

const char * s;

for (i = 0; i < N; i++) {

gst_get_hg_edge_status (H, i, &unneeded, &required);

if (required) {

s = "required";

} else if (unneeded) {

s = "unneeded";

} else {

s = "undecided";

}

printf (" Edge %d is %s\n", s);

}

98 3 CALLABLE LIBRARY FUNCTIONS

gst get hg metric

Get the metric object associated with a hypergraph.

int gst_get_hg_metric (gst_hg_ptr H,

gst_metric_ptr* metric);

H Hypergraph.

metric
Metric object associated with this hypergraph (see

Section 3.7 for information on metric objects).

Returns zero if the metric was queried successfully.

Example:

/* Assume that h is an existing hypergraph */

gst_metric_ptr metric;

/* Get metric associated with h */

gst_get_hg_metric (h, metric);

3.9 Hypergraph functions 99

gst get hg scale info

Get the scaling information associated with a hypergraph.

int gst_get_hg_scale_info

(gst_hg_ptr H,

gst_scale_info_ptr* scinfo);

H Hypergraph.

scinfo
Scaling information associated with this hypergraph

(see Section 3.14).

Returns zero if the scaling information was queried successfully.

Example:

/* Assume that h is an existing hypergraph */

gst_scale_info_ptr scinfo;

/* Get scaling information associated with h */

gst_get_hg_scale_info (h, scinfo);

100 3 CALLABLE LIBRARY FUNCTIONS

gst get hg properties

Return the list of properties associated with a hypergraph.

gst_proplist_ptr

gst_get_hg_properties (gst_hg_ptr H);

H Hypergraph

Returns the property list.

Example:

/* Assume we are given a hypergraph H */

double gtime, ptime;

gst_proplist_ptr hgprop;

/* Get timing information from the hypergraph, if available */

hgprop = gst_get_hg_properties (H);

gtime = 0.0; ptime = 0.0;

gst_get_dbl_property (hgprop, GST_PROP_HG_GENERATION_TIME, >ime);

gst_get_dbl_property (hgprop, GST_PROP_HG_PRUNING_TIME, &ptime);

printf ("Generation time: %.2f\n", gtime);

printf ("Pruning time: %.2f\n", ptime);

printf ("Total time: %.2f\n", ptime + gtime);

/* We can set our own property in the same list e.g. for later use */

#define GST_PROP_USER_TOTAL_TIME -1000

gst_set_dbl_property (hgprop, GST_PROP_USER_TOTAL_TIME, gtime + ptime);

3.9 Hypergraph functions 101

gst hg to graph

Given a hypergraph having a geometric embedding for each of its vertices and

edges, construct an ordinary graph containing the individual edges in the embed-

ding. For a rectilinear embedding the parameter GST PARAM GRID OVERLAY

is used to specify that the edges of the reduced grid graph rather than individual

edges of the embedding should be returned.

The original vertices in the hypergraph are marked as terminals in the new graph,

but the only way3 to get this information out of the new graph is to print it using

function gst save hg().

gst_hg_ptr gst_hg_to_graph (gst_hg_ptr H,

gst_param_ptr param,

int* status);

H Hypergraph

param Parameter set.

status
Status code (zero if the operation was successful and

non-zero otherwise).

Returns the new graph which represents the embedding.

Example:

/* Assume we are given an embedded hypergraph H */

H2 = gst_hg_to_graph (H, NULL, NULL);

/* Now H2 is a graph of the embedding of H. Print it. */

gst_save_hg (stdout, H2, NULL);

3In a future release of the library, there will be other means of obtaining this information.

102 3 CALLABLE LIBRARY FUNCTIONS

3.10 FST generation and pruning functions

All algorithms for solving geometric Steiner tree problems in GeoSteiner use the

two-phase approach that consists of full Steiner tree (FST) generation and con-

catenation.

FST generation is the process of generating a (hopefully small) set of FSTs that

is known to contain a Steiner minimum tree (SMT) as a subset. The input to

an FST generation algorithm is the set of terminal points, and the output is an

embedded hypergraph in which the vertices correspond to terminals and the edges

correspond to FSTs. The embedding of each hyperedge (or FST) is the geometric

tree structure of the FST.

In this section we describe the interface to all FST generation algorithms. They

are all fairly similar. In addition, a FST pruning function is given. This function

reduces the set of FSTs — or removes edges from the hypergraph — such that

the resulting hypergraph still contains an SMT. This may speed up the following

concatenation algorithm, in particular for very large problem instances.

3.10 FST generation and pruning functions 103

gst generate fsts

Given a point set (terminals) in the plane, generate a set of FSTs (hyperedges)

known to contain an SMT for the point set. The metric that should be used is

passed as a parameter (see section 3.7 for more on creating metric objects). The

generated FSTs are returned as edges in an embedded hypergraph.

gst_hg_ptr

gst_generate_fsts (int nterms,

double* terms,

gst_metric_ptr metric,

gst_param_ptr param,

int* status);

nterms Number of terminals.

terms Terminals in an array of doubles (x1, y1, x2, y2, . . .)

metric The metric for which FSTs are to be generated.

param Parameter set (NULL=default parameters).

status Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

int n;

double * terms;

gst_hg_ptr hg;

gst_metric_ptr metric;

/* Read points from stdin */

n = gst_get_points (stdin, 0, &terms, NULL);

/* Establish lambda-6 metric */

metric = gst_create_metric (GST_METRIC_UNIFORM, 6, NULL);

/* Generate lambda-6 FSTs */

hg = gst_generate_fsts (n, terms, metric, NULL, NULL);

104 3 CALLABLE LIBRARY FUNCTIONS

gst generate efsts

Given a point set (terminals) in the plane, generate a set of FSTs (hyperedges)

known to contain an Euclidean SMT for the point set. The FSTs are returned as

edges in an embedded hypergraph.

gst_hg_ptr

gst_generate_efsts (int nterms,

double* terms,

gst_param_ptr param,

int* status);

nterms Number of terminals.

terms Terminals in an array of doubles (x1, y1, x2, y2, . . .)

param Parameter set (NULL=default parameters).

status Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

int n;

double * terms;

gst_hg_ptr hg;

/* Read points from stdin */

n = gst_get_points (stdin, 0, &terms, NULL);

/* Generate Euclidean FSTs */

hg = gst_generate_efsts (n, terms, NULL, NULL);

3.10 FST generation and pruning functions 105

gst generate rfsts

Given a point set (terminals) in the plane, generate a set of FSTs (hyperedges)

known to contain a rectilinear SMT for the point set. The FSTs are returned as

edges in an embedded hypergraph.

gst_hg_ptr

gst_generate_rfsts (int nterms,

double* terms,

gst_param_ptr param,

int* status);

nterms Number of terminals.

terms Terminals in an array of doubles (x1, y1, x2, y2, . . .)

param Parameter set (NULL=default parameters).

status Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

int n;

double * terms;

gst_hg_ptr hg;

/* Read points from stdin */

n = gst_get_points (stdin, 0, &terms, NULL);

/* Generate rectilinear FSTs */

hg = gst_generate_rfsts (n, terms, NULL, NULL);

106 3 CALLABLE LIBRARY FUNCTIONS

gst generate ofsts

Given a point set (terminals) in the plane, generate a set of FSTs (hyperedges)

known to contain an octilinear SMT for the point set. The FSTs are returned as

edges in an embedded hypergraph.

gst_hg_ptr

gst_generate_ofsts (int nterms,

double* terms,

gst_param_ptr param,

int* status);

nterms Number of terminals.

terms Terminals in an array of doubles (x1, y1, x2, y2, . . .)

param Parameter set (NULL=default parameters).

status Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

int n;

double * terms;

gst_hg_ptr hg;

/* Read points from stdin */

n = gst_get_points (stdin, 0, &terms, NULL);

/* Generate octilinear FSTs */

hg = gst_generate_ofsts (n, terms, NULL, NULL);

3.10 FST generation and pruning functions 107

gst hg prune edges

Given a hypergraph H , return a hypergraph H ′ that has the same vertices as H ,

but a (possibly) reduced set of edges such that there still exists an optimal solution

to H in H ′. The pruning algorithms are metric dependent and require a geometric

embedding of the hypergraph vertices and edges.

gst_hg_ptr gst_hg_prune_edges (gst_hg_ptr H,

gst_param_ptr param,

int* status);

H Hypergraph.

param Parameter set (NULL=default parameters).

status Status code (zero if successful).

Returns new pruned hypergraph.

Example:

/* Assume that hg is an FST hypergraph */

gst_hg_ptr hg1;

/* Prune the set of FSTs in hg */

hg1 = gst_hg_prune_edges (hg, NULL, NULL);

/* Hypergraph hg1 now has the same set of vertices as hg,

but (in most cases) a significantly smaller set of edges that

still contains an SMT as a subset */

108 3 CALLABLE LIBRARY FUNCTIONS

3.11 Hypergraph optimization functions

The optimization problem associated with hypergraphs is the minimum spanning

tree (MST) in hypergraph problem. Solving this problem solves the FST concate-

nation problem — which is the second of the two phases for solving geometric

Steiner tree problems.

The library contains a powerful solver for the general MST in hypergraph prob-

lem. This solver uses linear programming and branch-and-cut (or backtrack search

for very small problem instances). A large number of parameters can be set to con-

trol the solver; consult Appendix A.3, A.4 and A.5 for a complete list of all solver

parameters.

A solution state object has type gst solver ptr. It has an associated hyper-

graph for which an MST should be found. The solver can be stopped and restarted,

e.g., depending on either the quality of (approximate) solutions that are found in

the solution process, or on the amount of running time used. The solution state ob-

ject can contain zero or more feasible (though not necessarily optimal) solutions

to the problem. A solution state object refers to both an hypergraph object and

a parameter object (from which all necessary parameter values are obtained), as

illustrated in Figure 6 on page 16. A demonstration program is given in Figure 5

on page 12.

3.11 Hypergraph optimization functions 109

gst create solver

Create a solution state object for a given hypergraph. The solution process is

started by calling the function gst hg solve(), and passing the created object as

parameter.

gst_solver_ptr

gst_create_solver (gst_hg_ptr H,

gst_param_ptr param,

int* status);

H Hypergraph.

param Parameter set (NULL=default parameters).

status Status code (zero if successful).

Returns new problem solution state object.

An example is given in Section 2.2 (Figure 5 on page 12).

110 3 CALLABLE LIBRARY FUNCTIONS

gst free solver

Free a solution state object. All memory associated with this solution state object,

except from the associated hypergraph and its objects, are destroyed.

int gst_free_solver (gst_solver_ptr solver);

solver Solution state object. Does nothing if NULL.

Returns zero if the operation was successful and non-zero otherwise.

An example is given in Section 2.2 (Figure 5 on page 12).

3.11 Hypergraph optimization functions 111

gst hg solve

Solve a tree problem for a given hypergraph. In the current version, this function

by default computes a minimum spanning tree (MST) in the hypergraph associ-

ated with the given solution state object; depending on the parameters given, this

function may also compute an heuristic solution to this problem.

This function can be repeatedly called to solve a (time-consuming) problem, e.g.,

by setting a CPU time limit for each call. The quality of any solution(s) obtained

within the given constraints can be queried by calling gst get solver status().

int gst_hg_solve (gst_solver_ptr solver,

int * reason);

solver Solution state object.

reason

Reason that the solver exited — see the description

below. If this parameter is NULL, the reason for exit-

ing is not returned.

The function return value indicates whether any serious errors were encountered

in the solution process. If this value is zero it means the solver ran successfully

and without problems — although it might have deliberately have been preempted

by the user.

A non-zero function return value indicates the error causing the solver to exit pre-

maturely. This could for example be GST ERR BACKTRACK OVERFLOW which

can happen if one has set the solver to use backtrack search on an instance which

is too big for this purpose (GST PARAM SOLVER ALGORITHM), i.e., more than

32 hyperedges.

When using default parameters (and when not using abort signals) then a value of

zero for the reason parameter means that the solution search space was com-

pletely exhausted. In this case the optimal solution has been found — unless the

problem was found to be infeasible. However, if the user has set any of the solver

stopping condition parameters, such as the CPU time limit, the actual reason for

112 3 CALLABLE LIBRARY FUNCTIONS

exiting the solution process is returned using the reason parameter. Possible

return values are one of the following:

Macro Name Description

GST SOLVE NORMAL Normal exit (search space exhausted)

GST SOLVE GAP TARGET Requested gap target obtained

GST SOLVE LOWER BOUND TARGET Requested lower bound obtained

GST SOLVE UPPER BOUND TARGET Requested upper bound obtained

GST SOLVE MAX BACKTRACKS Max. number of backtracks exceeded

GST SOLVE MAX FEASIBLE UPDATES Max. feasible updates exceeded

GST SOLVE ABORT SIGNAL Abort signal received

GST SOLVE TIME LIMIT CPU time limit exceeded

GST SOLVE BB STOP REQUESTED Caller requested early termination

GST SOLVE BACKTRACK BAD COSTS Backtrack search does not permit negetive edge costs

An example is given in Section 2.2 (Figure 5 on page 12).

3.11 Hypergraph optimization functions 113

gst get solver status

Return the status of the solution (if any) associated with the given solution state

object.

int gst_get_solver_status (gst_solver_ptr solver,

int* status);

solver Solution state object.

status Status of the current solution (if any).

Returns zero if the operation was successful and non-zero otherwise.

The value of the status parameter is one of the following:

Macro Name Description

GST STATUS OPTIMAL Optimal solution is available

GST STATUS INFEASIBLE Problem is infeasible

GST STATUS FEASIBLE Search incomplete, feasible solution(s) known

GST STATUS NO FEASIBLE Search incomplete, no feasible solutions known

GST STATUS NO SOLUTION Solver never invoked/hypergraph changed

An example is given in Section 2.2 (Figure 5 on page 12).

114 3 CALLABLE LIBRARY FUNCTIONS

gst get solver hypergraph

Return the hypergraph associated with the given solution state object.

gst_hg_ptr gst_get_solver_hypergraph (gst_solver_ptr solver);

solver Solution state object.

Pointer to associated hypergraph object.

3.11 Hypergraph optimization functions 115

gst get solver param

Return the hypergraph associated with the given solution state object.

gst_param_ptr gst_get_solver_param (gst_solver_ptr solver);

solver Solution state object.

Pointer to associated parameter set object.

116 3 CALLABLE LIBRARY FUNCTIONS

gst hg solution

Retrieve (one of) the best feasible solutions currently known for a given solution

state object.

int gst_hg_solution (gst_solver_ptr solver,

int* nedges,

int* edges,

double* length,

int rank);

solver Solution state object.

nedges Number of edges in the returned solution tree.

edges Array of edge numbers in the returned solution tree.

length Length of the returned tree.

rank
Rank of the solution that should be returned, where 0

is the best solution (see also discussion below).

Returns zero if the operation was successful and non-zero otherwise.

The maximal number of feasible solutions that will be retained by the solver is de-

termined by the parameter GST PARAM NUM FEASIBLE SOLUTIONS. How-

ever, for a given solution state object, the actual number of feasible solutions may

be less than this maximum — and even zero.

The function returns GST ERR RANK OUT OF RANGE when rank is less than

0 or greater than or equal to the number of feasible solutions available.

3.11 Hypergraph optimization functions 117

Example:

/* We assume that solver is a solution state object.

This code prints all feasible solutions ordered by their rank. */

int i, rank = 0;

int nedges;

int* edges;

double length;

while (1) {

/* Get number of edges in this solution.

Exit when no more solutions are available. */

if (gst_hg_solution (solver, &nedges, NULL, NULL, rank) != 0)

break;

/* Get edge indices and length of solution. */

edges = (int *) malloc (nedges * sizeof (int));

gst_hg_solution (solver, NULL, edges, &length, rank);

/* Print edge indices and length. */

printf ("Rank %d: Length is %f. Edges:", rank, length);

for (i = 0; i < nedges; i++)

printf(" %d", edges[i]);

printf("\n");

free (edges);

rank++;

}

118 3 CALLABLE LIBRARY FUNCTIONS

gst get solver properties

Return the property list associated with a solution state object.

gst_proplist_ptr

gst_get_solver_properties (gst_solver_ptr solver);

solver Solution state object.

Returns the property list.

Example:

/* We assume that solver is defined ...*/

double lower_bound;

if (!gst_get_dbl_property(gst_get_solver_properties(solver),

GST_PROP_SOLVER_LOWER_BOUND,

&lower_bound) {

printf("Lower bound for solver object is %f\n", lower_bound);

}

3.12 Optimization callback functions 119

3.12 Optimization callback functions

The GeoSteiner API provides the ability to invoke user-written code at key points

within the internal GeoSteiner algorithms. This is accomplished by means of

callback functions. The user establishes such a callback function by providing

two pointers:

• cb func: A pointer to a function to call

• cb data: A pointer to user-specified data to pass to the cb func func-

tions

When cb func is a NULL pointer (the default), no callback function is invoked.

The cb data pointer can be anything (in particular, a NULL pointer — Geo-

Steiner does nothing with this except pass it as an argument to the callback func-

tion.

User-written callback functions are passed the following arguments: The wherefrom

argument indicates the location within GeoSteiner’s internal algorithms from which

the callback function has been invoked. The code in the user’s callback function

should test this parameter to determine whether that particular calling context re-

quires action. There is a single callback function that is invoked from many places

within GeoSteiner, but most callback functions are only interested in one (or a

small number) of these calling contexts.

The node argument is an opaque object that provides access to a variety of in-

ternal GeoSteiner data that may be of interest to the callback function. The Geo-

Steiner API provides various accessor functions that use this node object to ac-

cess these data. Note that the node argument is ephemeral — the object it refers

to exists only during the execution of the callback function. The user must not at-

tempt to use this pointer in any other context (e.g., by storing it in a global variable

or in her cb data object or other data structure for later use).

The cb data argument is the data pointer provided by the user when the callback

function was established.

The GeoSteiner API defines a macro GST BB CALLBACK ARGS that encapsu-

lates the argument list declarations above. Using this macro helps to automatically

update the argument lists of user-written callback functions in the event that future

versions of GeoSteiner pass additionsl arguments to callback functions.

120 3 CALLABLE LIBRARY FUNCTIONS

The wherefrom argument can have one of the following values:

• GST CALLBACK BB LP SOLVED: Invoked each time a node finishes solv-

ing its LP over the constraint pool. (Solving over the constraint pool is an

iterative process that may invoke the LP solver several times until the cur-

rent LP solution satisfies all constraints in the pool. This callback is only

invoked when this iteration completes and all pool constraints are satisfied.)

• GST CALLBACK BB NEW UPPER BOUND: Invoked whenever an improved

upper bound (integer feasible solution) is obtained.

• GST CALLBACK BB NODE COMPLETED: Invoked when processing of a

node has finished. For fractional solutions, this is invoked before selecting

the branch candidate.

3.12 Optimization callback functions 121

gst set bb callback func

Set the branch-and-bound callback function (and data) for the given solution state

object to the given function and data pointers.

int gst_set_bb_callback_func (

gst_solver_ptr solver,

void (*cb_func) (GST_BB_CALLBACK_ARGS),

void * cb_data);

Returns status code, which is zero upon success.

Example:

void my_callback (int wherefrom, gst_node_ptr node, void * cb_data)

{

printf ("Callback invoked from %d.\n", wherefrom);

}

struct mydata data;

gst_set_bb_callback_func (solver, my_callback, &data);

122 3 CALLABLE LIBRARY FUNCTIONS

gst node get solver

A callback node accessor function to get the solution state object on whose behalf

this callback function has been invoked.

gst_solver_ptr gst_node_get_solver (gst_node_ptr node);

Returns solution state object for which the callback function was invoked.

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

gst_solver_ptr solver;

solver = gst_node_get_solver (node);

...

}

3.12 Optimization callback functions 123

gst node get z

A callback node accessor function to get the LP objective value associated with

the given node.

double gst_node_get_z (gst_node_ptr node);

node
The node accessor object passed to the callback func-

tion by GeoSteiner.

Returns the LP objective value.

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

double z;

z = gst_node_get_z (node);

...

}

124 3 CALLABLE LIBRARY FUNCTIONS

gst node get lb status

A callback node accessor function to get the current node’s ”lower bound status.”

int gst_node_get_lb_status (gst_node_ptr node);

Returns an integer having one of the following values:

• GST LB STATUS INFEASIBLE

• GST LB STATUS CUTOFF

• GST LB STATUS INTEGRAL

• GST LB STATUS FRACTIONAL

• GST LB STATUS PREEMPTED

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

int status;

status = gst_node_get_lb_status (node);

switch (status) {

case GST_LB_STATUS_INFEASIBLE: ... break;

case GST_LB_STATUS_CUTOFF: ... break;

case GST_LB_STATUS_INTEGRAL: ... break;

case GST_LB_STATUS_FRACTIONAL: ... break;

case GST_LB_STATUS_PREEMPTED: ... break;

default: abort ();

}

...

}

3.12 Optimization callback functions 125

gst node get node index

A callback node accessor function to get the index of the current node.

int gst_node_get_node_index (gst_node_ptr node);

Returns the integer node index. Index 0 represents the root node, with child nodes

having positive indices. An index of -1 indicates a candidate child node during

branch variable selection.

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

int node_index;

node_index = gst_node_get_node_index (node);

printf ("Node %d\n", node_index);

}

126 3 CALLABLE LIBRARY FUNCTIONS

gst node get parent node index

A callback node accessor function to get the index of the parent node of the current

node.

int gst_node_get_parent_node_index (gst_node_ptr node);

Returns the integer index of the parent node. The parent of the root node has index

-1.

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

int parent_node_index;

parent_node_index = gst_node_get_parent_node_index (node);

printf ("Parent node %d\n", parent_node_index);

}

3.12 Optimization callback functions 127

gst node get node depth

A callback node accessor function to get the depth of the current node within the

branch-and-bound tree. The root node has depth zero.

int gst_node_get_node_depth (gst_node_ptr node);

Returns the depth of the current node.

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

int depth;

depth = gst_node_get_node_depth (node);

printf ("Node depth %d\n", depth);

}

128 3 CALLABLE LIBRARY FUNCTIONS

gst node get node branch var

A callback node accessor function to get the index of the fractional variable that

was branched upon to create the current node from its parent. This is -1 for the

root node.

int gst_node_get_node_branch_var (gst_node_ptr node);

Returns the branch variable used to create the current node.

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

int bvar;

bvar = gst_node_get_node_branch_var (node);

printf ("Branch variable %d\n", bvar);

}

3.12 Optimization callback functions 129

gst node get node branch direction

A callback node accessor function to get the direction in which the branch variable

was constrained to create the current node from its parent. A value of 0 indicates

the var=0 branch. A value of 1 indicates the var=1 branch. This is 0 for the root

node.

int gst_node_get_node_branch_direction (gst_node_ptr node);

Returns the direction of the branch used to create the current node.

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

int dir;

dir = gst_node_get_node_branch_direction (node);

printf ("Branch direction %d\n", dir);

}

130 3 CALLABLE LIBRARY FUNCTIONS

gst node get lp index

A callback node accessor function to get the number of LPs solved at the current

node. (The separation algorithms are run on the solution of each such LP. If

violated constraints are found, they are added to the LP which is then re-solved,

which increments this index.)

int gst_node_get_lp_index (gst_node_ptr node);

Returns the index of the most recently solved LP at the current node. The first LP

solved receives an index of zero.

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

int lp_index;

lp_index = gst_node_get_lp_index (node);

printf ("LP %d\n", lp_index);

}

3.12 Optimization callback functions 131

gst node get solution

A callback node accessor function to get the LP solution vector associated with

the given node.

int gst_node_get_solution (gst_node_ptr node, double * x);

node
The node accessor object passed to the callback func-

tion by GeoSteiner.

x
Address of an array of double having sufficiently

many elements to receive the solution vector.

Returns an error code, which is zero upon success.

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

int nedges;

gst_solver_ptr solver;

gst_hg_ptr H;

double x;

/* Query number of edges in problem. */

solver = gst_node_get_solver (node);

H = gst_get_solver_hypergraph (solver);

gst_get_hg_edges (H, &nedges, NULL, NULL, NULL);

/* Allocate array for solution vector. */

x = malloc (nedges * sizeof (double));

gst_node_get_solution (node, x);

...

free (x);

}

132 3 CALLABLE LIBRARY FUNCTIONS

gst node get lb

A callback node accessor function to get the current node’s vector of lower bounds.

int gst_node_get_lb (gst_node_ptr node, double * lb);

node
The node accessor object passed to the callback func-

tion by GeoSteiner.

lb
Address of an array of double having sufficiently

many elements to receive the lower bound vector.

Returns an error code, which is zero upon success.

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

int nedges;

gst_solver_ptr solver;

gst_hg_ptr H;

double lb;

/* Query number of edges in problem. */

solver = gst_node_get_solver (node);

H = gst_get_solver_hypergraph (solver);

gst_get_hg_edges (H, &nedges, NULL, NULL, NULL);

/* Allocate array for lower bound vector. */

lb = malloc (nedges * sizeof (double));

gst_node_get_lb (node, lb);

...

free (lb);

}

3.12 Optimization callback functions 133

gst node get ub

A callback node accessor function to get the current node’s vector of upper bounds.

int gst_node_get_ub (gst_node_ptr node, double * ub);

node
The node accessor object passed to the callback func-

tion by GeoSteiner.

ub
Address of an array of double having sufficiently

many elements to receive the upper bound vector.

Returns an error code, which is zero upon success.

Example:

void my_callback (GST_BB_CALLBACK_ARGS)

{

int nedges;

gst_solver_ptr solver;

gst_hg_ptr H;

double ub;

/* Query number of edges in problem. */

solver = gst_node_get_solver (node);

H = gst_get_solver_hypergraph (solver);

gst_get_hg_edges (H, &nedges, NULL, NULL, NULL);

/* Allocate array for upper bound vector. */

ub = malloc (nedges * sizeof (double));

gst_node_get_ub (node, ub);

...

free (ub);

}

134 3 CALLABLE LIBRARY FUNCTIONS

3.13 Message handling functions

All output messages from GeoSteiner are passed through user-controllable chan-

nels. A given channel may write its output to more than one output (screen/files).

Channels have type gst channel ptr.

In this section we describe the functions for creating and freeing channels, for

adding output (screen/files) to a channel, and the basic functions for writing to

channels.

3.13 Message handling functions 135

gst create channel

Create a channel with an optional set of options. By default, output is unformat-

ted. In the current version, the only formatted output is Postscript; see function

gst channel setopts() for an example of how to activate Postscript formatting.

Consult geosteiner.h for the detailed structure of gst channel options.

gst_channel_ptr

gst_create_channel

(const gst_channel_options* chanopts,

int* status);

chanopts
Channel options (if NULL then default options are

used).

status Status code (zero if successful).

Returns the new channel object.

Example:

/* Create a channel with default options.

Ignore returned status. */

gst_channel_ptr chan;

chan = gst_create_channel(NULL, NULL);

136 3 CALLABLE LIBRARY FUNCTIONS

gst free channel

Free a channel and all its destinations.

int gst_free_channel (gst_channel_ptr chan);

chan Channel object. Does nothing if NULL.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that chan is an existing channel object */

gst_free_channel (chan);

/* All memory used by chan is now freed */

3.13 Message handling functions 137

gst channel getopts

Get channel options.

int gst_channel_getopts

(gst_channel_ptr chan,

gst_channel_options* options);

chan Channel opbject.

options
Pointer to the channel option structure where channel

options should be returned.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that chan is a channel */

gst_channel_options chanopts;

/* Get options and active Postscript output */

gst_channel_getopts (chan, &chanopts);

chanopts.flags |= GST_CHFLG_POSTSCRIPT;

gst_channel_setopts (chan, &chanopts);

138 3 CALLABLE LIBRARY FUNCTIONS

gst channel setopts

Set channel options.

int gst_channel_setopts

(gst_channel_ptr chan,

const gst_channel_options* options);

chan Channel opbject.

options
Pointer to the channel option structure that contains

new channel options.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that chan is a channel */

gst_channel_options chanopts;

/* Get options and active Postscript output */

gst_channel_getopts (chan, &chanopts);

chanopts.flags |= GST_CHFLG_POSTSCRIPT;

gst_channel_setopts (chan, &chanopts);

3.13 Message handling functions 139

gst channel add file

Add a file destination to a channel.

gst_dest_ptr

gst_channel_add_file (gst_channel_ptr chan,

FILE* fp,

int* status);

chan Channel object.

fp File handle.

status Status code (zero if successful).

Returns the new destination object (of type gst dest ptr).

Example:

/* Setup a channel for stdout */

gst_channel_ptr chan;

chan = gst_create_channel (NULL, NULL);

gst_channel_add_file (chan, stdout, NULL);

140 3 CALLABLE LIBRARY FUNCTIONS

gst channel add functor

Add a function as destination to a channel.

typedef size_t

gst_channel_func (const char* buf,

size_t cnt,

void* handle);

gst_dest_ptr

gst_channel_add_functor

(gst_channel_ptr chan,

gst_channel_func* func,

void* handle,

int* status);

chan Channel object.

func Function that should be added as destination.

handle
Handle used for passing error codes from the function

back to the application.

status Status code (zero if successful).

Returns the new destination object (of type gst dest ptr).

3.13 Message handling functions 141

Example:

static void

output_text_to_GUI (void * handle,

const char * text,

size_t nbytes)

{

Widget * widget = handle;

my_gui_write_text_to_text_widget (widget, text, nbytes);

}

int main (int argc, char **argv)

{

int status;

Widget * widget = my_gui_create_text_widget ();

gst_channel_ptr mychan = gst_create_channel (NULL, NULL);

gst_param_ptr myparm = gst_create_param (NULL);

/* Add functor to write output to GUI window. */

gst_channel_add_functor (mychan,

output_text_to_GUI,

widget,

&status);

gst_set_cnh_param (myparm,

GST_PARAM_PRINT_SOLVE_TRACE,

mychan);

/* Problems solved using myparm will send */

/* trace output to the GUI window. */

}

142 3 CALLABLE LIBRARY FUNCTIONS

gst channel rmdest

Remove a destination from a channel.

int gst_channel_rmdest (gst_dest_ptr dest);

dest Destination that should be removed.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that dest is a destination object */

gst_channel_rmdest (dest);

/* Destination object dest is now removed from its channel */

3.13 Message handling functions 143

gst channel write

Write a string to all destinations in a channel.

int gst_channel_write (gst_channel_ptr chan,

const char* text,

size_t nbytes);

chan Channel object.

text Buffer with text that should be written.

nbytes Number of bytes in buffer.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that chan is a channel. */

char* hello = "Hello, World!\n";

gst_channel_write (chan, hello, strlen(hello));

144 3 CALLABLE LIBRARY FUNCTIONS

gst channel printf

Print a formatted string to all destinations in a channel.

int gst_channel_printf (gst_channel_ptr chan,

const char* format,

...) _GST_PRINTF_ARGS (2,3);

chan Channel object.

format Printf formatting string.

... Arguments for formatting string.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Let chan be a channel, and let i1 and i2

be two integer variables. */

gst_channel_printf (chan, "i1 = %d i2 = %d\n", i1, i2);

3.14 Input and output functions 145

3.14 Input and output functions

A number of functions are provided for input and output of hypergraphs. The

input/output format can be chosen using parameters. Scaling information can be

associated with input points, and numbers can be printed in unscaled using this

information.

146 3 CALLABLE LIBRARY FUNCTIONS

gst create scale info

Create a scaling information object.

gst_scale_info_ptr gst_create_scale_info (int* status);

status Status code (zero if successful).

Returns the new scaling information object.

Example:

/* Create a new scaling information object

and use it to hold scaling information for

a set of points read from stdin. */

int n;

double* terms;

gst_scale_info_ptr scinfo;

scinfo = gst_create_scale_info (NULL);

n = gst_get_points (stdin, 0, &terms, scinfo);

3.14 Input and output functions 147

gst free scale info

Free a scaling information object.

int gst_free_scale_info (gst_scale_info_ptr scinfo);

scinfo Scaling information object that should be freed.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that scinfo is a scaling information object */

gst_free_scale_info (scinfo);

/* All memory used by scinfo is now freed */

148 3 CALLABLE LIBRARY FUNCTIONS

gst get points

Reads a point set from a file (e.g., stdin). Point coordinates should be separated

by whitespace. Reads until end-of-file or until a specified number of points have

been read.

A scaling information object can be associated with the set of points that are read;

if such an object is passed as an argument, this function attempts to find an ap-

propriate scaling for the points to maximize the accuracy of the internal (double)

representation. If the scaling information object is NULL, no scaling is performed.

int gst_get_points (FILE* fp,

int maxpoints,

double** points,

gst_scale_info_ptr scinfo);

fp Input file to read from.

maxpoints
Maximum number of points to read (if zero then read

until end-of-file).

points
Array containing read points (which must be allocated

by the user except when maxpoints = 0).

scinfo Scaling information object.

Returns the number of read points.

Example:

/* Read a set of points from stdin (until end-of-file).

A scaling information object is used. */

int n;

double* terms;

gst_scale_info_ptr scinfo;

scinfo = gst_create_scale_info (NULL);

n = gst_get_points (stdin, 0, &terms, scinfo);

3.14 Input and output functions 149

gst compute scale info digits

Set up various parameters needed for outputting scaled coordinates. Coordi-

nates/distances are printed with the minimum fixed precision whenever this gives

the exact result, that is, if all terminal coordinates are integral, they should al-

ways be written without a decimal point. Otherwise we will print the coordi-

nates/distances with full precision.

int gst_compute_scale_info_digits

(int nterms,

double* terms,

gst_scale_info_ptr scinfo);

nterms Number of terminals.

terms Terminals in an array of doubles (x1, y1, x2, y2, . . .)

scinfo Scaling information object that should be modified.

Returns zero if operation was successful and non-zero otherwise.

Example:

/* Assume that terms holds a set of n terminals

and that scinfo is an associated scaling

information object. Find the minimum number of digits

necessary when printing unscaled coordinates. */

gst_compute_scale_info_digits (n, terms, scinfo);

150 3 CALLABLE LIBRARY FUNCTIONS

gst unscale to string

Convert a given internal scaled coordinate to a printable unscaled ASCII string.

The internal form is in most cases an integer (to eliminate numeric problems), but

the unscaled data may involve decimal fractions.

char* gst_unscale_to_string

(char* buffer,

double val,

gst_scale_info_ptr scinfo);

buffer
Write unscaled string to this buffer. It should be allo-

cated to hold at least 32 characters.
val Double value that should be unscaled.

scinfo Scaling information object.

Returns a pointer to a string holding the unscaled value.

Example:

/* Print a set of n terminals in array terms

to channel chan. Scaling information is

given by scinfo. */

int i;

char buf1[32], buf2[32];

for (i = 0; i < n; i++) {

gst_unscale_to_string (buf1, terms[2*i], scinfo);

gst_unscale_to_string (buf2, terms[2*i+1], scinfo);

gst_channel_printf (chan, "(%s, %s)\n", buf1, buf2);

}

3.14 Input and output functions 151

gst unscale to double

Convert a given internal form coordinate to an unscaled double.

double gst_unscale_to_double

(double val,

gst_scale_info_ptr scinfo);

val Double value that should be unscaled.

scinfo Scaling information object.

Returns an unscaled double approximation.

Example:

/* Compute an unscaled array of terminal coordinates

from a scaled set of n terminals in array terms.

Scaling information is given by scinfo. */

int i;

double* unscaled_terms;

unscaled_terms = (double *) malloc (2 * n * sizeof (double));

for (i = 0; i < 2*n; i++) {

unscaled_terms[i] = gst_unscale_to_double (terms[i],

scinfo);

}

152 3 CALLABLE LIBRARY FUNCTIONS

gst load hg

Load a hypergraph from an input file. The function creates a new hypergraph and

adds the vertices and edges read from the input file. The file format must be one

of the FST data formats given in Appendix E.

gst_hg_ptr gst_load_hg (FILE* fp,

gst_param_ptr param,

int* status);

fp Input file to read from.

param Parameter set (currently not used).

status Status code (zero if successful).

Returns the hypergraph that is read.

Example:

/* Load a hypergraph from stdin */

gst_hg_ptr H;

H = gst_load_hg (stdin, NULL, NULL);

3.14 Input and output functions 153

gst save hg

Print a hypergraph to a file. The print format can be specified by parameter

GST PARAM SAVE FORMAT.

int gst_save_hg (FILE* fp,

gst_hg_ptr H,

gst_param_ptr param);

fp Print to this file.

H Hypergraph that should be printed.

param Parameter set (NULL=default parameters).

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Print a hypergraph H to stdout using

the default print format */

gst_save_hg (stdout, H, NULL);

154 3 CALLABLE LIBRARY FUNCTIONS

3.15 Miscellaneous functions

In this section we describe a few miscellaneous functions, e.g., asynchronous

functions that may be used by signal handlers.

3.15 Miscellaneous functions 155

gst deliver signals

This function is designed to be safely callable from a signal handler. The given

signals are delivered to the given solver, which responds to them at some point in

the near future. The signals parameter is the bit-wise OR of one or more special

signal values defined below.

void gst_deliver_signals (gst_solver_ptr solver,

int gstsignals);

solver Solution state object.

gstsignals

Bit vector defining the signals that should be delivered

to the solver; see table below for a list of possible

signals.

Returns nothing.

The following is a list of possible signals that can be delivered to the solver:

Macro Name Description

GST SIG ABORT Abort computation

GST SIG FORCE BRANCH Stop cutting and force a branch

GST SIG STOP TEST BVAR Stop testing branch variables and

use the best one seen so far

GST SIG STOP SEP Abort the separation routines

and continue with all cuts

discovered so far

Example:

/* Assume that solver is a solution state object.

Deliver a signal to force a branch. */

gst_deliver_signals (solver, GST_SIG_FORCE_BRANCH);

156 4 STAND-ALONE PROGRAMS

4 Stand-Alone Programs

Below we first give some examples of program invocations. This is followed by

a complete description of each stand-alone program. Note that a short description

of each program also can be obtained by running the program with the -h option.

The following command will generate a set of 70 random points and compute a

rectilinear Steiner minimal tree for it:

rand_points 70 | rfst | bb

The following computes an Euclidean Steiner minimal tree

rand_points 70 | efst | bb

and the following computes an octilinear Steiner minimal tree for the same set of

points

rand_points 70 | ufst | bb

Note that rand points always generates the same sequence of points unless given

the -r or -s option.

The following (Bourne shell) examples can be used to generate complete printable

postscript plots for these problem instances:

(cat prelude.ps; rand_points 70 | rfst | bb) >rsmt70.ps

(cat prelude.ps; rand_points 70 | efst | bb) >esmt70.ps

(cat prelude.ps; rand_points 70 | ufst | bb) >usmt70.ps

The complete set of FSTs can also be plotted as follows:

(cat prelude.ps; rand_points 70 | rfst | plotfst -fgo) >rfsts.ps

(cat prelude.ps; rand_points 70 | efst | plotfst -fgo) >efsts.ps

(cat prelude.ps; rand_points 70 | ufst | plotfst -fgo) >ufsts.ps

A reduced Hanan grid in the OR-library format (for the rectilinear problem) can

be generated as follows:

157

rand_points 70 | rfst | fst2graph

By pruning the set of FSTs, an even more reduced grid graph can be generated:

rand_points 70 | rfst | prunefst | fst2graph

An Euclidean Steiner minimal tree for theberlin52.tsp instance from TSPLIB

can be constructed and displayed as follows (assuming that the file berlin52.tsp

is present in your GeoSteiner directory):

(cat prelude.ps; lib_points <berlin52.tsp | efst | bb) | gv -

158 4 STAND-ALONE PROGRAMS

rand points

Generates random point sets. There is considerable flexibility in choosing the size,

precision and scaling factor for the generated point coordinates. By default, the

coordinates are almost always real numbers, uniformly distributed in the interval

[0, 1) (see below for exceptions to this rule). Several pseudo-random generator

algorithms are supported. The number of digits per coordinate (both default and

maximum) vary by generator, as described below. The following options are per-

mitted:

-b Binary mode. Generates coordinates that are uniformly dis-

tributed doubles in [0, 1), outputting them with full precision.

-d N Generate decimal numbers having N digits. (See below for default

and maximum values, which vary by generator.)

-g G Use pseudo-random number generator G. (See below.)

-k KEY Modify default generator seed with KEY, which can be arbitrary

text.

-p N Make N of the coordinate digits be fractional (i.e., to the right of

the decimal point). Default is for all digits to be fractional.

-r Randomize. Use an initial seed chosen from the current date and

time.

-s FILE If FILE exists, read the generator and its initial seed from this file.

When finished, write the generator and final seed to this file.

The -g G argument allows choosing between the following pseudo-random num-

ber generators:

Default : Max

G Digits Description

0 4 : 5 The “legacy” random generator. It is based on the original

PDP-11 Unix rand(3) function (with all of its ugly warts

intact). Its randomness is quite poor.

1 7 : 9 The “new” random generator. It uses a 64-bit shift regis-

ter with XOR feedback, and produces a reasonable level of

randomness.

2 7 : 19 The “AES-256” random generator. It uses the AES-256

block cipher as its fundamental entropy source, producing

truly excellent randomness. GeoSteiner must be built with

GMP in order for this generator to be available.

159

If no generator is specified, rand points will use generator 2 (AES-256), if avail-

able. Otherwise, generator 1 is used. The default generator can be overridden

using the RAND POINTS DEFAULT GENERATOR environment variable.

Note that using -s to load an intial seed from an existing seed file has the effect of

specifying the generator, since there is a data field within the seed file that specifies

the generator. (This data field is necessary because the format of the seed file state

information is different for each generator.) If both -g and -s are specified, then

either (1) the seed file must not yet exist, or (2) the generator specified with -g

must match that specified within the seed file.

Previous versions of rand points only supported generators 0 and 1, with the de-

fault being to use generator 0 to generate 4-digit integer coordinates. As a special

case, when using generator 0 (legacy) with neither the -d nor -p arguments, the

current version of rand points also generates 4-digit integers, thereby replicat-

ing the behavior of previous versions of rand points. Users who prefer the point

sets produced by previous versions of rand points can obtain these same, familiar

point sets without any additional command line arguments simply by setting the

environment variable

RAND POINTS DEFAULT GENERATOR=0

160 4 STAND-ALONE PROGRAMS

lib points

Reads a point set in either TSPLIB or OR-library format from stdin and converts

the input to point coordinates as required by efst, rfst or ufst. The program auto-

matically determines the input file type. The program has one optional parameter

(which has value 1 by default) that specifies which instance number should be

extracted from an OR-library file.

161

efst

Reads a point set from stdin, and generates a set of Euclidean FSTs that contains

at least one Euclidean Steiner minimal tree. The following options are permitted:

-d txt Description of problem instance.

-g Use greedy heuristic instead of Smith-Lee-Liebman (more time

consuming but generates fewer eq-points).

-k K Generate only FSTs having at most K terminals. This can save

considerable time but can also eliminate FSTs that must be in the

optimal Steiner tree (i.e., solutions can become suboptimal).

-m M Use multiple precision. Larger M use it more. Default is M=0

which disables multiple precision. The use of this option requires

that GeoSteiner be configured to use the GNU Multi-Precision

arithmetic library (GMP). (See the INSTALL file for more de-

tails).

-t Print detailed timings to stderr.

-v N Generate the output in version N of the FST data format. Sup-

ported versions are 0, 1, 2 and 3. Version 3 is the default.

-Z P V Set parameter P to value V, e.g. -ZEPS MULT FACTOR 64

sets the epsilon multiplication factor to 64

(GST PARAM EPS MULT FACTOR = 64).

162 4 STAND-ALONE PROGRAMS

rfst

Reads a point set from stdin, and generates a set of rectilinear FSTs that contains

at least one rectilinear Steiner minimal tree. The following options are permitted:

-d txt Description of problem instance.

-k K Generate only FSTs having at most K terminals. This can save

time but can also eliminate FSTs that must be in the optimal

Steiner tree (i.e., solutions can become suboptimal).

-t Print detailed timings to stderr.

-v N Generate the output in version N of the FST data format. Sup-

ported versions are 0, 1, 2 and 3. Version 3 is the default.

-Z P V Set parameter P to value V, e.g. -ZINCLUDE CORNERS 0

disables the generation of corner points

(GST PARAM INCLUDE CORNERS = 0)

163

ufst

Reads a point set from stdin, and generates a set of uniformly-oriented FSTs that

contains at least one uniformly-oriented Steiner minimal tree. The following op-

tions are permitted:

-d txt Description of problem instance.

-k K Generate only FSTs having at most K terminals. This can save

time but can also eliminate FSTs that must be in the optimal

Steiner tree (i.e., solutions can become suboptimal).

-l L Number of orientations (default: 4).

-t Print detailed timings to stderr.

-v N Generate the output in version N of the FST data format. Sup-

ported versions are 0, 1, 2 and 3. Version 3 is the default.

-Z P V Set parameter P to value V, e.g. -ZINCLUDE CORNERS 0

disables the generation of corner points

(GST PARAM INCLUDE CORNERS = 0)

164 4 STAND-ALONE PROGRAMS

bb

The FST concatenation algorithm using branch-and-cut to solve an IP formulation

of the problem. The FST data is read from stdin and a plot of the solution is

produced on stdout in an “incomplete” postscript form. A printable postscript file

can be obtained by prepending the file ”prelude.ps” to the program output. If you

want this file to be included in some other document then it needs a bounding box.

This can be obtained by running it through eps2eps (GhostScript 6.01 or later).

Various trace messages appear in the output as postscript comments. (The name

bb is for branch-and-bound – note that the name bc is already taken on Unix.)

The following options are permitted:

-2 Omit all 2-terminal Subtour Elimination Constraints (SEC’s)

from the initial constraint pool.

-b Disable ”strong branching”, which chooses branching variables

very carefully.

-B N Set branch variable selection policy. N=0: naive max of mins,

N=1: smarter lexicographic max of mins (default), N=2: product

of improvements.

-c P Pathname of checkpoint file to restore (if present) and/or update.

The files are actually named P.chk and P.ub, with temporary files

named P.tmp, P.new and P.nub.

-f The only information dumped is the FSTs in the best solu-

tion found. This can then be given to dumpfst/plotfst. E.g.

rand points | efst | bb -f | dumpfst -sl

-H Force the use of the backtrack search. This will result in an error

if there are more than 32 edges. Note that there is still a limit on

the number of backtracks (GST PARAM MAX BACKTRACKS). If

using this option one might also want to set backtrack limit to

infinity (otherwise an optimal solution might not be found).

-l T Sets a CPU time limit (in seconds) of T. Example CPU

times are: -l 3days2hours30minutes15seconds, -l

1000seconds, -l 1000 and -l 2h30m.

-m P Merge constraints from checkpoint file P with those of the formu-

lation.

165

-n N Output N best solutions (default: 1).

-r Plot the optimal LP relaxation solution for the root node, but only

if it is fractional.

-R When optimal root LP relaxation is obtained, determine for each

LP iteration the number of final constraints whose first violation

occurred during that iteration.

-t Do not include the title string in the postscript output (name,

length and time).

-T N Search N times more thoroughly for strong branching variables.

-u B Specify B to be the initial upper bound assumed by the branch-

and-bound.

-z N Set the target number of pool non-zeros to N.

-Z P V Set parameter P to value V, e.g. -ZGAP TARGET 0.5 sets

GST PARAM GAP TARGET = 0.5.

When configured to use CPLEX, the following additional option is permitted:

-a M N Force CPLEX allocation to be at least M rows and N non-zeros.

When configured to use lp solve, the following additional options are permitted:

-p Turn on the use of perturbations. This is the method that

lp solve 2.3 uses to deal with degenerate problems.

-s Turn on the use of problem scaling. Once again a rather crude

attempt to address problems that are badly behaved numerically.

The following “grep-able” items appear in the output within postscript comments,

and may be potentially useful:

@0 The instance description from the FST data file.

@1 Summary statistics:

– Number of terminals

– Number of FSTs/hyperedges

166 4 STAND-ALONE PROGRAMS

– Number of branch-and-bound nodes

– Number of LPs solved

– Phase 1 CPU time (FST generation)

– Phase 2 CPU time (branch-and-cut)

– Total CPU time

@2 LP/IP statistics:

– Length of optimal Steiner tree

– Length of LP relaxation at root node

– Percent of LP/IP ”gap”

– # of LPs solved for root node

– CPU time for root node

– Percent reduction of SMT over MST

@3 Initial constraint pool statistics:

– Number of rows in pool

– Number of non-zeros in pool

– Number of rows in LP tableau

– Number of non-zeros in LP tableau

@4 Constraint pool statistics for root node:

– Number of rows in pool

– Number of non-zeros in pool

– Number of rows in LP tableau

– Number of non-zeros in LP tableau

@5 Final constraint pool statistics:

– Number of rows in pool

– Number of non-zeros in pool

– Number of rows in LP tableau

167

– Number of non-zeros in LP tableau

@6 Statistics on FSTs occurring in the SMT:

– Number of FSTs in SMT

– Average FST size in SMT

– Maximum FST size in SMT

– Number of FSTs of size 2 in SMT

– Number of FSTs of size 3 in SMT

– Number of FSTs of size 4 in SMT

– Number of FSTs of size 5 in SMT

– Number of FSTs of size 6 in SMT

– Number of FSTs of size 7 in SMT

– Number of FSTs of size 8 in SMT

– Number of FSTs of size 9 in SMT

– Number of FSTs of size 10 in SMT

– Number of FSTs of size > 10 in SMT

@C Coordinates of a Steiner point in the optimal solution. The Steiner points

form a ”certificate” of the optimal solution since the optimal solution can

be reconstructed by computing a minimum spanning tree of the original

terminals and these Steiner points.

@D Deletion of slack rows from LP tableau.

@LO / @LN This pair of messages is emitted every time the lower bound gets tighter.

They contain the CPU time and the old/new bound, as well as the old/new

gap percentages. These can be plotted (i.e., using gnuplot) to graphically

show the convergence rate of the algorithm.

@NC Creation of a new branch-and-bound node:

– Node number

– Parent node number

– Branch variable

168 4 STAND-ALONE PROGRAMS

– Branch direction

– Objective value (the real LP objective is at least this value)

@PAP Adding ”pending” pool constraints to the LP tableau.

@PL State of LP tableau constraints.

@PMEM Constraint pool memory status. Printed before and after each garbage col-

lection, and after adding new/initial constraints to the pool.

@r Experimental output from -R switch.

@RC Experimental output from -R switch.

@UO / @UN This pair of messages is emitted every time the upper bound gets tighter.

They contain the CPU time and the old/new bound, as well as the old/new

gap percentages. These can be plotted (i.e., using gnuplot) to graphically

show the convergence rate of the algorithm.

169

prunefst

Reduce the set of FSTs generated by efst, rfst or ufst while still retaining at

least one optimal solution among the remaining set of FSTs. This program can

reduce the time to solve the FST concatenation problem considerably, but is only

worthwhile for large instances. The following options are permitted:

-b Use linear space and logarithmic time lookup for BSDs.

-d txt Description of problem instance.

-t Print detailed timings to stderr.

-v N Generate the output in version N of the FST data format. Sup-

ported versions are 0, 1, 2 and 3. Version 3 is the default.

-Z P V Set parameter P to value V, e.g. -ZEPS MULT FACTOR 64

sets the epsilon multiplication factor to 64

(GST PARAM EPS MULT FACTOR = 64).

170 4 STAND-ALONE PROGRAMS

dumpfst

Dumps readable information about generated FSTs. There are two forms of this

command, each producing a different type of output. The first form of the com-

mand is obtained whenever the -d or -h switches are used. These switches provide

summary information only — FST statistics, and/or a histogram of FST sizes:.

-d Display statistics about FSTs.

-h Display histogram of FST sizes.

-a Include all FSTs in histogram, even those that were “pruned” by

the FST generator or a pruning algorithm.

The second form of the command is obtained when neither -d nor -h are specified.

This form dumps all of the FSTs in a readable form. Each line of output represents

a single FST, listing its terminal numbers (0 through N-1). The terminals are listed

in the same order that they occur in the actual data structures, although they can

optionally be sorted in numeric order. The length of each FST can optionally be

appended to each line:

-l Append the FST length to each output line.

-s Terminals of each FST are listed in numeric (sorted) order instead

of internal order.

-a Include all FSTs, even those that were “pruned” by the FST gen-

erator or a pruning algorithm.

171

plotfst

Program to generate various plots of FSTs in an FST data file. Reads the FST

data file on stdin and produces postscript on stdout for the plots indicated by the

command line switches:

-f Prints all FSTs, 12 FSTs per page.

-g Prints FSTs in “grouped” fashion, 12 groups per page.

-o Prints all FSTs overlaid together.

-p Prints only the points, no FSTs.

Note that the file prelude.ps must be prepended to the output of this program

in order to have a complete postscript document.

172 4 STAND-ALONE PROGRAMS

fst2graph

Reads FSTs from stdin and produces an (ordinary) graph on stdout representing

the FSTs. For the rectilinear problem, the FSTs are overlaid on the Hanan grid

and the remaining Hanan grid is output. For the Euclidean problem the set of

all terminals and Steiner points in all FSTs forms the set of vertices and the line

segments form the edges. Output data is printed in the OR-library format by

default, but the SteinLib format is also supported:

-b N For version 4 output (STEINLIB INT), generate integer edge

weights as unsigned N-bit integers (default is N=64).

-d txt Description of problem instance.

-e Generate the edge graph for the rectilinear problem.

-u Output unscaled (fractional) data for the rectilinear problem.

-v N Generate version N format output.

REFERENCES 173

References

[1] A. B. Kahng and G. Robins. A New Class of Iterative Steiner Tree Heuristics

with Good Performance. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 11(7):893–902, 1992.

[2] B. K. Nielsen, P. Winter, and M. Zachariasen. An Exact Algorithm for the

Uniformly-Oriented Steiner Tree Problem. In Proceedings of the 10th Euro-

pean Symposium on Algorithms, Lecture Notes in Computer Science, volume

2461, pages 760–772. Springer, 2002.

[3] J. S. Salowe and D. M. Warme. Thirty-Five-Point Rectilinear Steiner Mini-

mal Trees in a Day. Networks, 25(2):69–87, 1995.

[4] J. M. Smith, D. T. Lee, and J. S. Liebman. An O(n logn) Heuristic for

Steiner Minimal Tree Problems on the Euclidean Metric. Networks, 11:23–

29, 1981.

[5] D. M. Warme. Spanning Trees in Hypergraphs with Applications to Steiner

Trees. Ph.D. thesis, Computer Science Dept., The University of Virginia,

1998.

[6] D. M. Warme, P. Winter, and M. Zachariasen. Exact Algorithms for Plane

Steiner Tree Problems: A Computational Study. In D.-Z. Du, J. M. Smith,

and J. H. Rubinstein, editors, Advances in Steiner Trees, pages 81–116.

Kluwer Academic Publishers, Boston, 2000.

[7] P. Winter. An Algorithm for the Steiner Problem in the Euclidean Plane.

Networks, 15:323–345, 1985.

[8] P. Winter and M. Zachariasen. Euclidean Steiner Minimum Trees: An Im-

proved Exact Algorithm. Networks, 30:149–166, 1997.

[9] M. Zachariasen. Rectilinear Full Steiner Tree Generation. Networks,

33:125–143, 1999.

[10] M. Zachariasen and P. Winter. Concatenation-Based Greedy Heuristics for

the Euclidean Steiner Tree Problem. Algorithmica, 25:418–437, 1999.

174 A LIBRARY PARAMETERS

A Library Parameters

The parameters in GeoSteiner are divided into five groups: FST generation pa-

rameters (Section A.1), LP solver parameters (Section A.2), hypergraph solver

algorithmic options (Section A.3), hypergraph solver stopping conditions (Sec-

tion A.4), and hypergraph solver input/output options (Section A.5).

Parameters are modified as described in Section 3.6. Each parameter is uniquely

identified by its macro name beginning with (GST PARAM). Below the effect of

each parameter is described. Also, the type of each parameter (double, int,

char* or gst channel ptr) and range of possible values are given.

A.1 FST generation parameters 175

A.1 FST generation parameters

GST PARAM MAX FST SIZE
int

Maximum size (number of terminals spanned) of generated FSTs.

Values

Any number greater than or equal to 2 (default: INT MAX).

GST PARAM INCLUDE CORNERS
int

Include corners of bent edges in FSTs in hypergraph embedding. Applies to rec-

tilinear and uniform-orientation metric FST generators. Including corners makes

the embedding easier to draw.

Values

GST PVAL INCLUDE CORNERS DISABLE 0 (default)

GST PVAL INCLUDE CORNERS ENABLE 1

GST PARAM EFST HEURISTIC
int

Heuristic used in the Euclidean FST generator: Smith-Lee-Liebman or Zachariasen-

Winter. The latter is slower but prunes more eq-points; it is therefore recom-

mended for large and/or difficult instances.

Values

GST PVAL EFST HEURISTIC SLL 0 (default)

GST PVAL EFST HEURISTIC ZW 1

GST PARAM EPS MULT FACTOR
int

176 A LIBRARY PARAMETERS

Epsilon multiplication factor F used in floating point comparisons. The maximum

relative error is expected to be at most F × DBL ESPILON.

Values

Any number greater than or equal to 1 (default: 32).

GST PARAM MULTIPLE PRECISION
int

Use GNU Multi-Precision arithmetic library (GMP) in the Euclidean FST gener-

ator in order to improve numerical precision of computed eq-points: 0: off; 1: use

GMP with 1 Newton iteration; 2: use GMP with 1 or more Newton iterations,

stopping when a convergence test indicates that 1/2 ULP of precision has been

obtained.

Values

GST PVAL MULTIPLE PRECISION OFF 0 (default)

GST PVAL MULTIPLE PRECISION ONE ITER 1

GST PVAL MULTIPLE PRECISION MORE ITER 2

GST PARAM INITIAL EQPOINTS TERMINAL
int

Number of eq-points initially allocated per terminal in the Euclidean FST genera-

tor. Although eq-point storage is added dynamically when needed, some large or

difficult instances run out of memory if the initial allocation is insufficient.

Values

Any number greater than or equal to 1 (default: 100).

GST PARAM BSD METHOD
int

Data structure for holding bottleneck Steiner distances (BSD). Either quadratic

space and constant time lookup or linear space and logarithmic time lookup. The

latter is recommended for very large instances.

A.1 FST generation parameters 177

Values

GST PVAL BSD METHOD CONSTANT 0 (default)

GST PVAL BSD METHOD LOGARITHMIC 1

178 A LIBRARY PARAMETERS

A.2 LP solver parameters

GST PARAM LP SOLVE PERTURB int

Use perturbations when solving LPs (only applicable when using lp solve as LP-

solver).

Values

GST PVAL LP SOLVE PERTURB DISABLE 0 (default)

GST PVAL LP SOLVE PERTURB ENABLE 1

GST PARAM LP SOLVE SCALE int

Use scaling when solving LPs (only applicable when using lp solve as LP-solver).

Values

GST PVAL LP SOLVE SCALE DISABLE 0 (default)

GST PVAL LP SOLVE SCALE ENABLE 1

GST PARAM CPLEX MIN ROWS int

Force the LP solver allocation to be at least N rows (only applicable when using

CPLEX as LP-solver).

Values

Any non-negative number (default: 0).

GST PARAM CPLEX MIN NZS int

Force the LP solver allocation to be at least N non-zeros (only applicable when

using CPLEX as LP-solver).

Values

Any non-negative number (default: 0).

A.3 Hypergraph solver algorithmic options 179

A.3 Hypergraph solver algorithmic options

GST PARAM SOLVER ALGORITHM
int

Hypergraph solver algorithm: Branch-and-cut, backtrack search, or chosen auto-

matically. Backtrack search is only applicable if the instance has 32 or fewer hy-

peredges. Also note that some stopping conditions — such as UB/LB gap — are

not feasible for backtrack search. The automatic algorithm uses backtrack search

when the instance is small (see parameters GST PARAM BACKTRACK MAX VERTS

and GST PARAM BACKTRACK MAX EDGES); furthermore, it switches to branch-

and-cut when the the backtrack limit GST PARAM MAX BACKTRACKS is hit.

Values

GST PVAL SOLVER ALGORITHM AUTO 0 (default)

GST PVAL SOLVER ALGORITHM BRANCH AND CUT 1

GST PVAL SOLVER ALGORITHM BACKTRACK SEARCH 2

GST PARAM NUM FEASIBLE SOLUTIONS
int

Number N of stored feasible solutions (top N solutions). A value of N for this

parameter instructs the solver to retain the N best feasible solutions discovered.

Values

Any number greater than or equal to 1 (default: 1).

GST PARAM BRANCH VAR POLICY
int

Branch variable policy. 0: naive max of mins, 1: smarter lexicographic max of

mins, 2: product of improvements; 3: weak branching. All policies except the last

one use strong branching.

Values

GST PVAL BRANCH VAR POLICY NAIVE 0

180 A LIBRARY PARAMETERS

GST PVAL BRANCH VAR POLICY SMART 1 (default)

GST PVAL BRANCH VAR POLICY PROD 2

GST PVAL BRANCH VAR POLICY WEAK 3

GST PARAM CHECK BRANCH VARS THOROUGHLY
int

Search N times more thoroughly for strong branching variables.

Values

Any number from 1 to 1000 (default: 1).

GST PARAM TARGET POOL NON ZEROS
int

Target number of pool non-zeros; target is computed automatically when value is

zero.

Values

Any non-negative number (default: 0).

GST PARAM SEED POOL WITH 2SECS
int

This parameter controls whether or not to seed the initial constraint pool with all 2-

terminal Subtour Elimination Constraints (SECs). Most problems have relatively

few of these, but some problems (such as those with many edges containing a

large number of vertices) can blow up unless this is disabled.

Values

GST PVAL SEED POOL WITH 2SECS DISABLE 0

GST PVAL SEED POOL WITH 2SECS ENSABLE 1 (default)

GST PARAM INITIAL UPPER BOUND
double

A.3 Hypergraph solver algorithmic options 181

Value of initial upper bound for problem being solved.

Values

Any number (default: DBL MAX).

GST PARAM CHECK ROOT CONSTRAINTS int

When the optimal root LP relaxation is obtained, determine for each LP iteration

the number of final constraints whose first violation occurred during that iteration.

This option creates a temporary file to hold the LP solution vector from each

iteration. This file can grow very large.

Values

GST PVAL CHECK ROOT CONSTRAINTS DISABLE 0 (default)

GST PVAL CHECK ROOT CONSTRAINTS ENABLE 1

GST PARAM LOCAL CUTS MODE int

Local cuts mode: 0: disable local cuts; 1: apply local cuts only when no sub-

tour violation exists; 2: apply local cuts to congested components that contain no

subtour violations; 3: apply local cuts in both cases.

Values

GST PVAL LOCAL CUTS MODE DISABLE 0 (default)

GST PVAL LOCAL CUTS MODE SUBTOUR RELAXATION 1

GST PVAL LOCAL CUTS MODE SUBTOUR COMPONENTS 2

GST PVAL LOCAL CUTS MODE BOTH 3

GST PARAM LOCAL CUTS MAX VERTICES int

Local cuts will not be attempted for any subproblem having more than this number

of vertices.

Values

Any number from 0 to 80 (default: 80).

GST PARAM LOCAL CUTS MAX EDGES

182 A LIBRARY PARAMETERS

int

Local cuts will not be attempted for any subproblem having more than this number

of edges.

Values

Any number from 0 to 256 (default: 256).

GST PARAM LOCAL CUTS VERTEX THRESHOLD
double

A threshold value α that prohibits local cuts on any fractional component C =
(V ′, E ′) of a parent problem H = (V,E) unless |V ′| < α ∗ |V |.

Values

Any number from 0 to 1 (default: 0.75).

GST PARAM LOCAL CUTS MAX DEPTH
int

Maximum recursive depth of local cuts. 0: disable local cuts; 1: enable local cuts

with no recursion; 2: enable local cuts with two recursive levels. -1: enable local

cuts with recursion to any depth.

Values

GST PVAL LOCAL CUTS MAX DEPTH DISABLE 0

GST PVAL LOCAL CUTS MAX DEPTH ONELEVEL 1 (default)

GST PVAL LOCAL CUTS MAX DEPTH TWOLEVELS 2

GST PVAL LOCAL CUTS MAX DEPTH ANYLEVEL -1

GST PARAM LOCAL CUTS TRACE DEPTH
int

Tracing of local cuts. 0: do not trace local cuts or their recursive invocations;

1: trace first level of local cuts; 2: trace first two levels of local cuts; -1: trace any

level of local cuts.

A.3 Hypergraph solver algorithmic options 183

Values

GST PVAL LOCAL CUTS TRACE DEPTH DISABLE 0 (default)

GST PVAL LOCAL CUTS TRACE DEPTH ONELEVEL 1

GST PVAL LOCAL CUTS TRACE DEPTH TWOLEVELS 2

GST PVAL LOCAL CUTS TRACE DEPTH ANYLEVEL -1

GST PARAM LOCAL CUTS TRACE STYLE
int

Selects the style of local cuts trace messages.

Values

GST PVAL LOCAL CUTS TRACE STYLE NORMAL 0 (default)

GST PVAL LOCAL CUTS TRACE STYLE VERBOSE 1

GST PARAM MAX CUTSET ENUMERATE COMPS
int

Controls the behavior of the zero-weight cutset separation algorithm, which looks

for multiple connected components. If the number N of connected components

does not exceed this threshold, then the separator generates one cutset constraint

for each of the 2N −2 possible combinations of connected components (excluding

the two combinations that take all or none of the components). This parameter

controls an exponential process, so setting it too high can easily swamp the solver

with constraints.

Values

Any number from 0 to 11 (default: 5)

GST PARAM SEC ENUM LIMIT
int

Congested components having at most this number of vertices are exhaustively

searched to find all violated subtour elimination constraints. A component with

N vertices has 2N−N−1 possible subtour elimination constraints. This parameter

therefore controls an exponential process — setting it too high can easily swamp

the solver with constraints or increase runtime.

184 A LIBRARY PARAMETERS

Values

Any number from 0 to 16 (default: 10)

GST PARAM BACKTRACK MAX VERTS
int

Backtrack search should only be attempted for solving MST in hypergraph prob-

lem when the number of vertices is smaller than this value.

Values

Any number from 0 to 32 (default: 8).

GST PARAM BACKTRACK MAX EDGES
int

Backtrack search should only be attempted for solving MST in hypergraph prob-

lem when the number of edges is smaller than this value.

Values

Any number from 0 to 32 (default: 12).

GST PARAM MAX BACKTRACKS
int

Maximum number of distinct partial solution nodes to enumerate during a single

run of the backtrack search algorithm. Note that if this limit is hit, the solver might

exit without having found an optimal solution.

Values

Any non-negative number (default: 10000).

GST PARAM SPARSE SUBTOURS
int

There are two forms for hypergraph subtour constraints: the “classic” subtour, and

the form obtained by subtracting the “classic” inequality from the single equation

A.3 Hypergraph solver algorithmic options 185

of the formulation. If enabled, then generate the form that has the least number

of non-zeros (i.e., more sparse). If disabled, always generate the “classic” subtour

inequality.

Values

GST PVAL SPARSE SUBTOURS DISABLE 0

GST PVAL SPARSE SUBTOURS ENABLE 1 (default)

GST PARAM ZERO WEIGHT CUTSETS METHOD
int

Controls the behavior of the zero-weight cutset separation algorithm, which is

invoked when the support hypergraph of the current LP solution consists of two or

more connected components. For each such connected component, this algorithm

generates either: (1) a pair of complementary subtour inequalities; or (2) an actual

cutset inequality (not recommended).

Values

GST PVAL ZERO WEIGHT CUTSETS METHOD SUBTOURS 0 (default)

GST PVAL ZERO WEIGHT CUTSETS METHOD CUTSET 1

GST PARAM STRENGTHEN REDUCE
int

If enabled, attempt to strengthen generated subtour inequalities by performing

the various reductions (greedy vertex deletion, connected components and bicon-

nected components) on the subhypergraph induced by the vertices of the subtour.

Values

GST PVAL STRENGTHEN REDUCE DISABLE 0

GST PVAL STRENGTHEN REDUCE ENABLE 1 (default)

GST PARAM GENERATE UNSTRENGTHENED
int

186 A LIBRARY PARAMETERS

If enabled, generate violated subtours in their original form — before any strength-

ening is performed. (This is implcitly enabled if GST PARAM STRENGTHEN REDUCE

is disabled to prevent all violated subtours from being discarded.)

Values

GST PVAL GENERATE UNSTRENGTHENED DISABLE 0

GST PVAL GENERATE UNSTRENGTHENED ENABLE 1 (default)

GST PARAM INITIAL PRIMAL HEURISTIC
int

If enabled, run the primal heuristic at the very start, (before any LPs have been

solved). Normally the primal heuristic is given the current LP solution as a “hint”

for constructing good solutions, but it can also run no such solution. This option

is normally disabled because any such upper bound is usually replaced quickly

on the next invocation of the primal heuristic, after the first LP has been solved.

Turning this option on permits a very quick solution.

Values

GST PVAL INITIAL PRIMAL HEURISTIC DISABLE 0 (default)

GST PVAL INITIAL PRIMAL HEURISTIC ENABLE 1

A.4 Hypergraph solver stopping conditions 187

A.4 Hypergraph solver stopping conditions

GST PARAM CPU TIME LIMIT double

CPU time limit for solver (in seconds); when the limit is zero, no CPU time limit

is imposed.

Values

Any non-negative number (default: 0).

GST PARAM GAP TARGET double

Exit solver when ratio UB/LB between the upper bound (UB) and the lower bound

(LB) is less than or equal to this threshold; e.g., if target is 1.01, the solver stops

when a solution within 1% from the optimum has been found.

Values

Any number greater than or equal to 1 (default: 1).

GST PARAM UPPER BOUND TARGET double

Exit solver when a feasible solution whose length is at most this value is found.

Values

Any number (default: -DBL MAX).

GST PARAM LOWER BOUND TARGET double

Exit solver when the lower bound becomes greater than or equal to this value.

Values

Any number (default: DBL MAX).

GST PARAM MAX FEASIBLE UPDATES

188 A LIBRARY PARAMETERS

int

Exit solver when N feasible solution updates have been made (zero means no

limit). A feasible update is either an insertion of a solution of any quality into

the (non-full) set of solutions, or a replacement of an inferior solution with an

improved solution in the (full) set of solutions. The size of the solution set is

specified using parameter GST PARAM NUM FEASIBLE SOLUTIONS.

Values

Any non-negative number (default: 0).

GST PARAM BB NODE LIMIT
int

Stop the optimization after processing this many branch-and-bound nodes. If this

parameter is zero, there is no limit on the number of branch-and-bound nodes

processed.

Values

Any non-negative number (default: 0).

GST PARAM BB LP LIMIT
int

Stop the optimization after processing this many LPs (optimize / separate itera-

tions). The number of LPs processed is a global number that completely disre-

gards branch-and-bound node boundaries. If this parameter is zero, there is no

limit on the number of LPs processed.

Values

Any non-negative number (default: 0).

GST PARAM INITIAL PRIMAL HEUR STOP
int

A.4 Hypergraph solver stopping conditions 189

If this parameter and INITIAL PRIMAL HEURISTIC are both enabled, opti-

mization stops immediately after this initial invocation of the primal heuristic,

with a status of GST SOLVE BB STOP REQUESTED. No LPs are solved, nor

is any branch-and-bound performed. This permits a very quick solution, but no

lower bound will be available, and therefore no indication of solution quality.

Values

GST PVAL INITIAL PRIMAL HEUR STOP DISABLE 0 (default)

GST PVAL INITIAL PRIMAL HEUR STOP ENABLE 1

190 A LIBRARY PARAMETERS

A.5 Hypergraph solver input/output options

GST PARAM SAVE FORMAT int

Format used by gst hg save() when saving a hypergraph to a file: 0: OR-library

format; 1: SteinLib format; 2: GeoSteiner FST format version 2; 3: GeoSteiner

FST format version 3; 4: SteinLib format with integer edge weights.

Values

GST PVAL SAVE FORMAT ORLIBRARY 0

GST PVAL SAVE FORMAT STEINLIB 1

GST PVAL SAVE FORMAT VERSION2 2

GST PVAL SAVE FORMAT VERSION3 3 (default)

GST PVAL SAVE FORMAT STEINLIB INT 4

GST PARAM SAVE INT NUMBITS int

Number of bits of precision to use in final integer edge weights when using

gst hg save() to save hypergraphs having Euclidean metric problems in “inte-

ger” SteinLib format (GST PARAM SAVE FORMAT set to

GST PVAL SAVE FORMAT STEINLIB INT).

Values

Value must be at least 32. Default value is 64.

GST PARAM GRID OVERLAY int

Used by function gst hg to graph() to specify that the edges of the reduced grid

graph rather than individual edges of the embedding should be returned (only

applicable for the rectilinear metric).

Values

GST PVAL GRID OVERLAY DISABLE 0

GST PVAL GRID OVERLAY ENABLE 1 (default)

GST PARAM DETAILED TIMINGS CHANNEL

A.5 Hypergraph solver input/output options 191

gst channel ptr

Detailed timing is written to this channel.

Values

Any valid channel pointer (default: NULL).

GST PARAM PRINT SOLVE TRACE
gst channel ptr

Solver output trace is written to this channel.

Values

Any valid channel pointer (default: NULL).

GST PARAM CHECKPOINT FILENAME
char*

Pathname P of checkpoint file to restore (if present) and/or update. The files

are actually named P.chk and P.ub, with temporary files named P.tmp, P.new and

P.nub.

Values

Any valid pathname (default: NULL).

GST PARAM CHECKPOINT INTERVAL
double

Perform checkpointing of solver process at a time interval (in seconds) given by

this parameter.

Values

Any number between 0 and 1000000 (default: 3600). A value of 0 means that no

checkpointing should be performed.

GST PARAM MERGE CONSTRAINT FILES

192 A LIBRARY PARAMETERS

char*

A colon-separated list of pathnames of checkpoint files. All constraints from the

constraint pool of each listed checkpoint file are merged into the solver’s con-

straint pool before solving the current hypergraph problem.

Values

A colon-separated list of pathnames of checkpoint files (default: NULL).

193

B Hypergraph Properties

The following table shows the properties currently accessible in a hypergraph in-

stance. Read more about properties in Section 3.8.

Property Value

GST PROP HG HALF FST COUNT 10000

GST PROP HG GENERATION TIME 20000

GST PROP HG MST LENGTH 20001

GST PROP HG PRUNING TIME 20002

GST PROP HG INTEGRALITY DELTA 20003

GST PROP HG NAME 30000

194 C SOLVER PROPERTIES

C Solver Properties

The following table shows the properties currently accessible in a solver object.

Read more about properties in Section 3.8.

Property Value

GST PROP SOLVER ROOT OPTIMAL 11000

GST PROP SOLVER ROOT LPS 11001

GST PROP SOLVER NUM NODES 11002

GST PROP SOLVER NUM LPS 11003

GST PROP SOLVER INIT PROWS 11004

GST PROP SOLVER INIT PNZ 11005

GST PROP SOLVER INIT LPROWS 11006

GST PROP SOLVER INIT LPNZ 11007

GST PROP SOLVER ROOT PROWS 11008

GST PROP SOLVER ROOT PNZ 11009

GST PROP SOLVER ROOT LPROWS 11010

GST PROP SOLVER ROOT LPNZ 11011

GST PROP SOLVER FINAL PROWS 11012

GST PROP SOLVER FINAL PNZ 11013

GST PROP SOLVER FINAL LPROWS 11014

GST PROP SOLVER FINAL LPNZ 11015

GST PROP SOLVER LOWER BOUND 11016

GST PROP SOLVER CPU TIME 21000

GST PROP SOLVER ROOT TIME 21001

GST PROP SOLVER ROOT LENGTH 21002

195

D Error Codes

Error Code Value

GST ERR UNDEFINED 1000

GST ERR LIBRARY CLOSED 1001

GST ERR PROPERTY NOT FOUND 1002

GST ERR PROPERTY TYPE MISMATCH 1003

GST ERR BACKTRACK OVERFLOW 1004

GST ERR SOLUTION NOT AVAILABLE 1005

GST ERR RANK OUT OF RANGE 1006

GST ERR INVALID METRIC 1007

GST ERR NO EMBEDDING 1008

GST ERR ALREADY CLOSED 1009

GST ERR LP SOLVER ACTIVE 1010

GST ERR LOAD ERROR 1011

GST ERR INVALID NUMBER OF TERMINALS 1012

GST ERR PARAMETER VALUE OUT OF RANGE 1013

GST ERR UNKNOWN PARAMETER ID 1014

GST ERR INVALID PROPERTY LIST 1015

GST ERR INVALID HYPERGRAPH 1016

GST ERR INVALID NUMBER OF VERTICES 1017

GST ERR INVALID NUMBER OF EDGES 1018

GST ERR INVALID EDGE 1019

GST ERR INVALID VERTEX 1020

GST ERR INVALID DIMENSION 1021

GST ERR NO STEINERS ALLOWED 1022

GST ERR INVALID CHANNEL 1023

GST ERR INVALID CHANNEL OPTIONS 1024

GST ERR INVALID PARAMETERS OBJECT 1025

GST ERR INVALID PARAMETER TYPE 1026

GST ERR EFST GENERATOR DISABLED 1029

GST ERR RFST GENERATOR DISABLED 1030

GST ERR UFST GENERATOR DISABLED 1031

GST ERR FST PRUNER DISABLED 1032

GST ERR INVALID SOLVER 1033

GST ERR BACKTRACK BAD COSTS 1034

196 E FST DATA FILE FORMATS

E FST Data File Formats

The FST generators produce output called FST data files. (They are sometimes

called “phase 1 data files”, since FST generation is the first phase of the two-phase

process for computing Steiner trees.

FST data files come in three different formats, distinguished by version numbers.

Currently there are three such formats corresponding to versions 0, 2 and 3 of the

FST data format. (Version 1 is very obsolete, and no longer supported.)

Note that version 0 and 3 data formats can be used to describe Steiner tree in graph

(or hypergraph) instances. However, GeoSteiner 5.3 cannot solve such problems.

It blindly assumes all vertices are terminals. If given such an instance, GeoSteiner

will produce the MST (i.e., the minimum tree spanning all vertices, be they ter-

minals, Steiner vertices, or any mixture thereof.)

Version 0

Version 0 is used to represent an abstract MST or Steiner tree in graph or hyper-

graph problem instance. It is essentially the same format as used in Beasley’s

“OR-library” – but extended slightly to handle hypergraph instances as well as

graph instances. The OR-library format is as follows:

<Number of vertices N> <Number of edges M>

For each edge:

<Vertex 1> <Vertex 2> <Edge cost>

<Number of terminal vertices K>

<Terminal 1> <Terminal 2> ... <Terminal K>

Vertices are numbered 1 through N. Each <Terminal i> is the vertex number

of a vertex that is a terminal (i.e., must be connected). The <Edge cost>’s are

real numbers.

We extend this format slightly by permitting each edge to have two or more ver-

tices. In exchange for this flexibility, we require the entire description of each

edge to reside on a single line of the data file. Therefore, the final number on each

line represents the hyperedge cost, and all preceding numbers on the line represent

the vertices of the hyperedge.

197

Version 2

Version 2 is used primarily to represent geometric FSTs (Euclidean or rectilinear),

although it can also handle non-geometric (graph) instances. It is unable, however,

to represent Steiner trees in hypergraph problems, because it assumes every vertex

is a terminal.

In the following description, fields enclosed in <<...>> are omitted when the

Metric is Graph. The format is as follows:

<Version Number: literally "V2">

<Instance description (free text)>

<Metric: 1 = Rectilinear, 2 = Euclidean, 3 = Graph>

<Number of terminals (N)>

<<Decimal length of MST>> <<Hex length of MST>>

<<Number of duplicate terminal groups (ndg)>>

<Coordinate/length scaling factor>

<Machine description (free text)>

<Front-end CPU-time (1/100s of a second (integer number)>

<Number of hyperedges/FSTs (M)>

For each terminal:

<<Dec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>

For each duplicate terminal group:

<<Number of duplicate terminals>>

<<Terminal indices (1..N), on one line separated by spaces>>

For each hyperedge/FST:

<Number of terminals (Ni)>

<Terminal indices (1..N), on one line separated by spaces>

<Decimal length of hyperedge/FST> <Hex length of hyperedge/FST>

<<Number of Steiner points (Mi)>>

For each Steiner point:

<<Dec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>

<<Number of FST edges (Ki)>>

For each FST edge:

<<endpoint-1>> <<endpoint-2>>

<FST status: 0 = never needed, 1 = maybe needed, 2 = always needed>

<Number of incompatible FSTs>

<Incompatible FST indices (1..M), on one line separated by spaces>

<Number of concatenation terminals>

<Conc. terminals indices (1..N), on one line separated by spaces>

198 E FST DATA FILE FORMATS

Version 3

Version 3 is the default format, and represents geometric FSTs (Euclidean or rec-

tilinear) as well as graph instances. Since it separately specifies each vertex to

be either a terminal or Steiner vertex, it can also represent Steiner problems in

graphs/hypergraphs. A number of obsolete fields from version 2 is omitted, how-

ever.

In the following description, fields enclosed in <<...>> are omitted when the

Metric is Graph. The format is as follows:

<Version Number: literally "V3">

<Instance description (free text)>

<Metric: 1 = Rectilinear, 2 = Euclidean, 3 = Graph>

<Number of terminals (N)>

<<Decimal length of MST>> <<Hex length of MST>>

<Coordinate/length scaling factor>

<Decimal Integrality delta> <Hex Integrality delta>

<Machine description (free text)>

<Front-end CPU-time (1/100s of a second (integer number)>

<Number of hyperedges/FSTs (M)>

For each terminal:

<<Dec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>

For each terminal:

<Terminal/Steiner flag: 0=Steiner, 1=Terminal>

For each hyperedge/FST:

<Number of terminals (Ni)>

<Terminal indices (1..N), on one line separated by spaces>

<Decimal length of hyperedge/FST> <Hex length of hyperedge/FST>

<<Number of Steiner points (Mi)>>

For each Steiner point:

<<Dec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>

<<Number of FST edges (Ki)>>

For each FST edge:

<<endpoint-1>> <<endpoint-2>>

<FST status: 0 = never needed, 1 = maybe needed, 2 = always needed>

<Number of incompatible FSTs>

<Incompatible FST indices (1..M), on one line separated by spaces>

199

The following conventions are observed in versions 2 and 3 of the FST data file

format:

• Data input routines require only that the individual data fields are separated

by one or more white-space characters (space, tab, newline, vertical tab, and

form-feed are the white-space characters of ANSI C).

• Data output routines shall align items according to the schema above:

– Schema fields that appear on separate lines shall be written on separate

lines.

– Schema fields that are all on one line shall be written all on one line.

– The data shall be indented as shown by the schema.

– Each indentation level shall be one “tab stop”.

– The implementor may freely choose the width of this “tab stop”.

• The <Instance description (free text)> and <Machine description

(free text)> fields shall each be a sequence of 0 to 79 characters. Each

character in the sequence may be any printable ASCII character except new-

line.

• The <on one line separated by spaces> fields are permitted to span

several lines, so long as the additional lines are each indented an additional

“tab stop”. The intent of this splitting is to fully pack lines without exceed-

ing some column limit (e.g., 80 columns). If no data is to appear then the

line is removed completely.

• All decimal fields shall be unscaled – just as in the original terminal coor-

dinate input data.

• The hexadecimal fields shall be scaled. For example suppose that the <Coordinate

scaling factor> is K. Then the following relationship is implied:

<Dec X-coord> = <Hex X-coord> / 10**K

where the equal sign is meant to imply “is within epsilon of”. Scaling of

data shall be at the discretion of the FST generator. For example the FST

generator is permitted to always specify a scaling factor of zero – thereby

disabling the scaling feature. Programs that read FST data files should not

assume that the hex-values (scaled or otherwise) are all integral without first

verifying the actual data values.

200 E FST DATA FILE FORMATS

• The <Decimal Integrality delta> (<Hex Integrality delta>) fields

represent an unscaled (scaled) lower bound on the amount by which two

solutions of different lengths must differ. For Euclidean FSTs, this must

always be 0. For rectilinear FSTs scaled to integer lengths this would be

1 (scaled value). For graphs with integer weights, this can also be 1. The

branch-and-cut can use this to provide earlier cutoff of nodes that cannot

reduce the upper bound.

• Let fields <endpoint-1> and <endpoint-2>, occur within an FST contain-

ing N terminals and M Steiner points. Let the field value be J . Then the

interpretation of the endpoint field is as follows:

1 ≤ J ≤ N =⇒ endpoint is the J th terminal in the FST’s list of terminals.

−M ≤ J ≤ −1 =⇒ endpoint is the −J th Steiner point in the FST’s list of

Steiner points.

• (only applicable for version 2 of the FST data file format)

Duplicate terminal groups (DTGs) identify subsets of the vertices having

identical coordinates:

– The size of each DTG shall be at least 2.

– Each terminal may be listed in at most one DTG.

– The terminal indices listed in a single DTG must be distinct.

– The first terminal in each duplicate terminal group shall be referenced

by at least one FST (having FST status 6= 0).

– The remaining terminals in each duplicate terminal group shall NOT

be referenced by any FST (having FST status 6= 0).

• If an FST has “never needed” status then the FST generator may output

any incompatibility and concatenation terminal information, including no

information at all (such information is redundant).

• The incompatible information shall NOT include the FST itself.

• The incompatible information need not include FSTs which are “never needed”.

• The incompatible information need not include FSTs which share two or

more terminals. It is assumed that programs that read FST data files are

smart enough to know about such basic incompatibilities already. Omitting

such incompatibilities can significantly reduce the size of the data file.

201

• The FST-graph for rectilinear FSTs must always be a “left-most” and “top-

most” Hwang topology. If not, such FSTs will not appear to be Hwang

topologies when plotted.

• A simple top-down traversal of each Euclidean FST-graph starting from the

first terminal must yield the recursive equilateral-point structure of the FST.

In this way, programs that read Euclidean FST data files are able to correctly

compute the exact length of each FST in terms of algebraic numbers, if

desired.

Index

gst attach cplex, 25

gst channel add file, 139

gst channel add functor, 140

gst channel getopts, 137

gst channel printf, 144

gst channel rmdest, 142

gst channel setopts, 138

gst channel write, 143

gst close geosteiner, 19

gst close lpsolver, 23

gst compute scale info digits, 149

gst copy hg, 76

gst copy hg edges, 77

gst copy metric, 57

gst copy param, 36

gst copy proplist, 63

gst create channel, 135

gst create hg, 75

gst create metric, 55

gst create param, 35

gst create proplist, 61

gst create scale info, 146

gst create solver, 109

gst delete property, 65

gst deliver signals, 155

gst detach cplex, 26

gst distance, 58

gst esmt, 29

gst free channel, 136

gst free hg, 78

gst free metric, 56

gst free param, 37

gst free proplist, 62

gst free scale info, 147

gst free solver, 110

gst generate efsts, 104

gst generate fsts, 103

gst generate ofsts, 106

gst generate rfsts, 105

gst get chn param, 50

gst get dbl param, 39

gst get dbl property, 66

gst get hg edge embedding, 92

gst get hg edge status, 96

gst get hg edges, 87

gst get hg metric, 98

gst get hg number of vertices, 86

gst get hg one edge, 89

gst get hg one edge embedding, 94

gst get hg one vertex embedding, 91

gst get hg properties, 100

gst get hg scale info, 99

gst get hg terminals, 85

gst get hg vertex embedding, 90

gst get int param, 43

gst get int property, 67

gst get metric info, 59

gst get param id, 51

gst get param type, 52

gst get points, 148

gst get properties, 70

gst get property type, 64

gst get solver hypergraph, 114

gst get solver param, 115

gst get solver properties, 118

gst get solver status, 113

gst get str param, 47

gst get str property, 68

gst hg prune edges, 107

gst hg solution, 116

202

INDEX 203

gst hg solve, 111

gst hg to graph, 101

gst hgmst, 32

gst load hg, 152

gst lpsolver version string, 24

gst node get lb, 132

gst node get lb status, 124

gst node get lp index, 130

gst node get node branch direction, 129

gst node get node branch var, 128

gst node get node depth, 127

gst node get node index, 125

gst node get parent node index, 126

gst node get solution, 131

gst node get solver, 122

gst node get ub, 133

gst node get z, 123

gst open geosteiner, 18

gst open lpsolver, 22

gst osmt, 31

gst query dbl param, 40

gst query int param, 44

gst rsmt, 30

gst save hg, 153

gst set bb callback func, 121

gst set chn param, 49

gst set dbl param, 38

gst set dbl property, 71

gst set hg edge weights, 81

gst set hg edges, 80

gst set hg metric, 83

gst set hg number of vertices, 79

gst set hg scale info, 84

gst set hg vertex embedding, 82

gst set int param, 42

gst set int property, 72

gst set param, 53

gst set str param, 46

gst set str property, 73

gst smt, 28

gst unscale to double, 151

gst unscale to string, 150

gst version, 21

gst version string, 20

